• Title/Summary/Keyword: Morphine

Search Result 402, Processing Time 0.036 seconds

Effects of Ginseng Saponin on Morphine Physical Dependence (몰핀의 신체적 의존성에 미치는 인삼 Saponin의 효과)

  • 김학성;오기완
    • Journal of Ginseng Research
    • /
    • v.16 no.1
    • /
    • pp.13-17
    • /
    • 1992
  • The present experiments were performed to investigate the effects of the ginseng total saponin on the development of physical dependence on morphine via intracerebroventricular (i.c.v) route. Morphine (10 $\mu\textrm{g}$/${mu}ell$/hr) was continuously infused via osmotic minipumps into lateral cerebral ventricle of male Sprague Dawley rats for 7 days. Concurrent ginseng total saponin (100, 200 $\mu\textrm{g}$/10${mu}ell$/hr) was infused intraperitoneally (i.p) via osmotic pumps for 7 days. Treatment with ginseng total saponin (200$\mu\textrm{g}$/10${mu}ell$/hr) significantly diminished jumping, teeth chattering, hypothermia and weight loss precipitated by naloxone, compared with those animals received only morphine infusion. These results suggest that ginseng total saponin has central effect on the inhibition of physical dependence on morphine, as systemic ginseng total saponin inhibits the development of physical dependence in rats infused with morphine intracerebroventricularly.

  • PDF

Inhibitory Effect of Bacopa monniera on morphine Induced Pharmacological Effects in Mice

  • Balakrishna, K.;Veluchamy, G.;Devaraj, S. Niranjali;Sumathi, T.
    • Natural Product Sciences
    • /
    • v.13 no.1
    • /
    • pp.46-53
    • /
    • 2007
  • The effects of the alcoholic extract of Bacopa monniera (BMA) on morphine-induced pharmacological activities were studied in mice. Oral administration of the extract (40 mg/kg) significantly inhibited morphine-induced analgesic tolerance, withdrawal symptoms, hyperactivity, reverse tolerance, Dopamine receptor supersensitivity and apo-morphine-induced climbing behaviour in mice. The results of this study showed that, alcoholic extract of Bacopa monniera (BMA) exerted inhibitory effect against morphine-induced pharmacological effects, suggesting that the extract could be useful in the treatment of morphine toxicity.

Brain Reward Circuits in Morphine Addiction

  • Kim, Juhwan;Ham, Suji;Hong, Heeok;Moon, Changjong;Im, Heh-In
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.645-653
    • /
    • 2016
  • Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.

Effects of Ginseng Leaf Saponins on the Development of Morphine Tolerance and Dependence in Mice (인삼잎 사포닌이 몰핀의 내성 및 의존성 형성에 미치는 영향)

  • Kim, Hack-Seang;Kim, Sun-Hye;Lee, Myung-Koo;Choi, Kang-Ju;Kim, Suk-Chang
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.8-13
    • /
    • 1989
  • The effects of orally administered ginseng leaf saponins(GLS) on the analgesic action of morphine, the development of morphine induced tolerance and physical dependence, and the hepatic flutathione contents in mice were investigated. GLS antagonized the analgesic action of morphine and inhibited the development of morphine induced tolerance and physical dependence. It also inhibited the decrease in hepatic glutathione level induced by multiple injections of morphine.

  • PDF

Mediation of $N-methyl-_D-aspartate$ on Neuropeptide Y Expression Induced by Morphine in Mouse Cerebellum

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.479-485
    • /
    • 2001
  • The existence of opioid receptors in mammalian cerebellum except human, has not been clearly understood. In the present study, we found that NPY was inducible by morphine in the mouse cerebellar granular and Purkinje cell layers. We performed in situ RT-PCR and immunohistochemistry to characterize the NPY expression. The increase of NPY gene expression by morphine (30 mg/kg, i.p.) was inhibited by pretreatment with not only naloxone (100 mg/kg, i.p.) but also a noncompetitive NMDA antagonist, MK-801 (0.3 mg/kg, i.p.). The competitive NMDA antagonist, AP-5 (0.9 mg/kg, i.p.) slightly attenuated the increased NPY expression by morphine. Also, the finding similar to morphine was shown by NMDA (70 mg/kg, i.p.) treatment. Our results indicate that NPY was inducible by morphine and this might reflect activation of NMDA receptors in granule cells that relay mossy fiber inputs to Purkinje cells via parallel fibers.

  • PDF

Effects of Ginseng Total Saponin on Morphine-induced Alterations in Brain Opioid and Dopamine Receptors

  • Kim, A.-Y.;Lee, S.-Y.;Kim, Y.-R.;G.-S. Yoo;D.-K. Lim;K. W. Oh;Kim, K.-M.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.100-100
    • /
    • 1995
  • Several behavioral studies have suggested that ginseng total saponin (GTS) antagonizes morphine actions. Based on these observations, we conducted biochemical studies to elucidate the cellular mechanism of GTS actions. morphine hydrochloride (10mg/kg, sc) and/or on (400mg/kg, oral ) were administered to mice for 14 consecutive days. Ligand binding studies were conducted from striatal membranes. For opioid receptors, morphine increased the affinity but decreased the maximal binding sites for $^3$H naloxone. GTS partially recovered it. In case of dopamine receptors, morphine increased affinity and maximal binding sites for 3H spiperone. and GTS partially blocked it. These results suggest that morphine affects cellular events by modulating opioid receptors and that opioid receptors interact with dopamine receptors to change the mental status. GTS could be helpful for the treatment of morphine- induced mental disorders.

  • PDF

Involvement of pCREB Expression in Inhibitory Effects of Coptis japonica on Morphine-induced Psychological Dependence

  • Kwon, Seung-Hwan;Ha, Ri-Ra;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Morphine is a potent analgesic with significant abuse potential, because of drug craving and psychological dependence. It is reported that repeated treatment of morphine can produce conditioned place preference (CPP) showing a reinforcing effect in mice. Previously, we have reported the inhibitory effect of the methanolic extract of Coptis japonica (MCJ) on morphine-induced CPP in mice. The present study was employed whether p-CREB expression is involved in the inhibitory effect of MCJ on the morphine-induced CPP in the mouse hippocampus. Repeated administration of MCJ 100 mg/kg inhibited morphine-induced CPP. Expression of p-CREB was increased in the dentate gyrus of the hippocampus that had undergone morphineinduced CPP. This increase of expression was significantly inhibited by administration of MCJ 100 mg/kg, compared to the morphine control group. Taken together, these results suggest that MCJ inhibits morphine-induced CPP through the regulation of p-CREB expression in the mouse dentate gyrus of the hippocampus.

Effect of the Combination of CI-988 and Morphine on Neuropathic Pain after Spinal Cord Injury in Rats

  • Kim, Junesun;Kim, Youngkyung;Hahm, Suk-Chan;Yoon, Young Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.125-130
    • /
    • 2015
  • Cholecystokinin is known to be involved in the modulation of nociception and to reduce the efficacy of morphine analgesia. This study investigated the effects of intrathecal administration of morphine and the cholecystokinin type B antagonist CI-988 on below-level neuropathic pain after spinal cord injury in rats. We also examined the interaction of morphine and CI-988 in the antinociceptive effect. Both morphine and CI-988 given individually increased the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner. The combination of ineffective doses of intrathecally administered CI-988 and morphine produced significant analgesic effects and the combination of effective doses resulted in analgesic effects that were greater than the sum of the individual effects of each drug. Thus, morphine showed a synergistic interaction with CI-988 for analgesia of central neuropathic pain.

Changes of the Level of G Protein ${\alpha}-subunit$ mRNA by Withdrawal from Morphine and Butorphanol

  • Oh, Sei-Kwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.291-299
    • /
    • 2000
  • Morphine or butorphanol was continuously infused into cerebroventricle (i.c.v.) with the rate of $26\;nmol/{\mu}l/h$ for 3 days, and the withdrawal from opioid was rendered 7 hrs after the stopping of infusion. The expression of physical dependence produced by these opioids was evaluated by measuring the naloxone-precipitated withdrawal signs. The withdrawal signs produced in animals dependent on butorphanol (kappa opioid receptor agonist) were similar to those of morphine (mu opioid receptor agonist). Besides the behavioral modifications, opioid withdrawal affected G protein expression in the central nervous system. The G-protein ${\alpha}-subunit$ has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of morphine or butorphanol on the modulation of G protein ${\alpha}-subunit$ mRNA were investigated by using in situ hybridization study. In situ hybridization showed that the levels of $G\;{\alpha}s$ and $G\;{\alpha}i$ were changed during opioid withdrawal. Specifically, the level of $G\;{\alpha}s$ mRNA was decreased in the cortex and cerebellar granule layer during the morphine and butorphanol withdrawal. The level of $G\;{\alpha}i$ mRNA was decreased in the dentate gyrus and cerebellar granule layer during the morphine withdrawal. However, the level of $G\;{\alpha}i$ mRNA was significantly elevated during the butorphanol withdrawal. These results suggest that region-specific changes of G protein ${\alpha}-subunit$ mRNA were involved in the withdrawal from morphine and butorphanol.

  • PDF

Inhibitory Effects of (-)-Epigallocatechin gallate on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Kwon, Han-Na;Hong, Jin-Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.125-131
    • /
    • 2006
  • The inhibitory effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated in mice. A single administration of morphine produces hyperlocomotion. The repeated administration of morphine develops sensitization, a progressive enhancement of locomotion, which is used as a model for studying the craving and drug-seeking behaviors characterizing addiction, and CPP, which is used as a model for studying drug reinforcement, respectively. EGCG inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, EGCG inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of EGCG These results provide evidence that EGCG has anti-dopaminergic activity, as inhibiting the development of dopamine receptor supersensitivity and apomorphine-induced climbing behaviors. Therefore, it is suggested that green tea may be useful for the prevention and therapy of these adverse actions of morphine.