• 제목/요약/키워드: Monte-Carlo Simulation

검색결과 2,898건 처리시간 0.029초

풀밴드 GaAs monte carlo 시뮬레이션을 위한 최적사면체격자의 발생 (Generation of a adaptive tetrahedral refinement mesh for GaAs full band monte carlo simulation)

  • 정학기
    • 전자공학회논문지D
    • /
    • 제34D권7호
    • /
    • pp.37-44
    • /
    • 1997
  • A dadaptive refinement tetrahedron mesh has been presented for using in full band GaAs monte carlo simulation. A uniform tetrahedron mesh is used without regard to energy values and energy variety in case of the past full band simulation. For the uniform tetrahedron mesh, a fine tetrahedron is demanded for keeping up accuracy of calculation in the low energy region such as .GAMMA.-valley, but calculation time is vast due to usin gthe same tetrahedron in the high energy region. The mesh of this study, thererfore, is consisted of the fine mesh in the low energy and large variable energy region and rough mesh n the high energy. The density of states (DOS) calculated with this mesh is compared with the one of the uniform mesh. The DOS of this mesh is improved th efive times or so in root mean square error and the ten times in the correlation coefficient than the one of a uniform mesh. This refinement mesh, therefore, can be used a sthe basic mesh for the full band GaAs monte carlo simulation.

  • PDF

편심측정 결과가 반영된 몬테카를로 시뮬레이션을 이용한 적외선 광학계 조립정렬 공차 할당 기법 (Tolerance Allocation Method for IR Optics Fabrication Using Monte-Carlo Simulation Based on Measured Reflective Eccentricity)

  • 유재은
    • 한국광학회지
    • /
    • 제22권4호
    • /
    • pp.161-169
    • /
    • 2011
  • 본 논문에서는 광학 민감도가 큰 IR 광학계의 조립정렬과정에서 목표 성능을 만족시키기 위한 조립정렬 허용범위를 설정하는 방법을 제시하였다. 조립정렬 과정에서 편심측정기를 이용하여 각각의 광학소자에 대한 반사 편심량을 측정할 수 있다. 측정된 값을 이용하여 몬테카를로 시뮬레이션을 수행하였고 이를 이용하여 조립 정렬 이후의 광학계의 성능을 예측하였다. 시뮬레이션 결과와 실제 제작된 광학계의 광학 성능을 비교하여 본 논문에서 제시한 공차 할당 기법의 타당성을 확인하였다.

Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures CO2/CH3OHCO2/C2 H5OH, and CO2/CH3CH2CH2OH

  • Moon, Sung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.811-817
    • /
    • 2002
  • Gibbs ensemble Monte Carlo simulations were performed to calculate the vapor-liquid coexistence properties for the binary mixtures $CO_2/CH_3OH$, $CO_2/C_2H_5OH$, and $CO_2/CH_3CH_2CH_2OH.$ The configurational bias Monte Carlo method was used in the simulation of alcohol. Density of the mixture, composition of the mixture, the pressure-composition diagram, and the radial distribution function were calculated at vapor-liquid equilibrium. The composition and the density of both vapor and liquid from simulation agree considerably well with the experimental values over a wide range of pressures. The radial distribution functions in the liquid mixtures show that $CO_2$ molecules interact more stogly with methyl group than methylene group of $C_2H_5OH$ and $CH_3CH_2CH_2OH$ due to the steric effects of the alcohol molecules.

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

몬테 카를로 시뮬레이션을 이용한 하이브리드 로켓의 신뢰성 분석 (Reliability Analysis of Hybrid Rocket using Monte-Carlo Simulation)

  • 문근환;김완범;이정표;최주호;김진곤
    • 항공우주시스템공학회지
    • /
    • 제7권4호
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, probabilistic reliability analysis was conducted for hybrid rocket performance using Monte-Carlo Simulation. For the accuracy, reliability analysis was performed with experimental data. To simplify the analysis process, the oxidizer was supplied with constant pressure, so that pressure variation with time can be eliminated. And time-space averaged regression rate model was used. The regression rate is obtained with a series of experiments. For reliability analysis of thrust, constant exponent of regression rate is assumed that has probabilistic character. So, the efficiency of characteristic velocity has also probabilistic values. As a results, probability distribution of the thrust is obtained by Monte-Carlo simulation using random samples of the input parameter and validated under the 95% confidence level.

몬테칼로 시뮬레이션을 이용한 기술투자 실물옵션평가에 대한 연구 (A Study on Real Option Valuation for Technology Investment Using the Monte Carlo Simulation)

  • 성웅현
    • 기술혁신학회지
    • /
    • 제7권3호
    • /
    • pp.533-554
    • /
    • 2004
  • Real option valuation considers the managerial flexibility to make ongoing decisions regarding implementation of investment projects and deployment of real assets. The appeal of the framework is natural given the high degree of uncertainty that firms face in their technology investment decisions. This paper suggests an algorithm for estimating volatility of logarithmic cash flow returns of real asset based on Monte Carlo simulation. This research uses a binomial model to obtain point estimate of real option value with embedded expansion option case and provides also an array of numerical results to show the interval estimation of option value using Monte Carlo simulation.

  • PDF

Hybrid Monte Carlo 시뮬레이션에 의한 InAlAs/InGaAs HBT의 전자전송 해석 (Analysis of Electron Transport in InAlAs/InGaAs HBT by Hybride Monte Carlo Simulation)

  • 송정근;황성범;이경락
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권9호
    • /
    • pp.922-929
    • /
    • 1997
  • As the size of semiconductor devices shrinks in the horizontal as well as vertical dimension it is difficult to estimate the transport-velocity of electron because they drift in non-equilibrium with a few scattering. In this paper HYbrid Monte Carlo simulator which employs the drift-diffusion model for hole-transport and Monte Carlo model for electron-transport in order to reduce the simulation time and increase the accuracy as well has been developed and applied to analyze the electron-transport in InAlAs/InGaAs HBT which is attractive for an ultra high speed active device in high speed optical fiber transmission systems in terms of the velocity and energy distribution as well as cutoff frequency.

  • PDF

전자빔 몬테 카를로 시물레이션 프로그램 개발 및 전자현미경 이미징 특성 분석 (Development of Electron Beam Monte Carlo Simulation and Analysis of SEM Imaging Characteristics)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.554-562
    • /
    • 2012
  • Processing of Scanning electron microscope imaging has been analyzed in both secondary electron (SE) imaging and backscattered electron (BSE) image. Because of unique characteristics of both secondary electron and backscattered electron image, mechanism of imaging process and image quality are quite different each other. For the sake of characterize imaging process, Monte Carlo simulation code have been developed. It simulates electron penetration and depth profile in certain material. In addition, secondary electron and backscattered electron generation process as well as their spatial distribution and energy characteristics can be simulated. Geometries that has fundamental feature have been imaged using the developed Monte Carlo code. Two, SE and BSE images generation process will be discussed. BSE imaging process can be readily used to discriminate in both material and geometry by simply changing position and direction of BSE detector. The developed MC code could be useful to design BSE detector and their position. Furthermore, surface reconstruction technique is possibly developed at the further research efforts. Basics of Monte Carlo simulation method will be discussed as well as characteristics of SE and BSE images.