DOI QR코드

DOI QR Code

Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures CO2/CH3OHCO2/C2 H5OH, and CO2/CH3CH2CH2OH


Abstract

Gibbs ensemble Monte Carlo simulations were performed to calculate the vapor-liquid coexistence properties for the binary mixtures $CO_2/CH_3OH$, $CO_2/C_2H_5OH$, and $CO_2/CH_3CH_2CH_2OH.$ The configurational bias Monte Carlo method was used in the simulation of alcohol. Density of the mixture, composition of the mixture, the pressure-composition diagram, and the radial distribution function were calculated at vapor-liquid equilibrium. The composition and the density of both vapor and liquid from simulation agree considerably well with the experimental values over a wide range of pressures. The radial distribution functions in the liquid mixtures show that $CO_2$ molecules interact more stogly with methyl group than methylene group of $C_2H_5OH$ and $CH_3CH_2CH_2OH$ due to the steric effects of the alcohol molecules.

Keywords

References

  1. Frenkel, D.; Mooij, G. C. A. M.; Smit, B. J. Phys.: Condensed Matter 1992, 4,3053. https://doi.org/10.1088/0953-8984/4/12/006
  2. Laso, M.; de Pablo, J. J.; Suter, U. W. J. Chem. Phys. 1992, 97, 2817. https://doi.org/10.1063/1.463022
  3. Panagiotopoulos, A. Z.; Quirke, N.; Stapleton, M.; Tildesley, D. J. Mol. Phys. 1988, 63, 527. https://doi.org/10.1080/00268978800100361
  4. Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995,102, 2126. https://doi.org/10.1063/1.469563
  5. Siepmann, J. I.; Martin, M. G.; Mundy, C. J.; Klein, M. L. Mol. Phys. 1997, 90, 687. https://doi.org/10.1080/002689797172048
  6. van Leeuwen, M. E. Mol. Phys. 1996, 87, 87. https://doi.org/10.1080/00268979600100031
  7. Martin, M. G.; Siepmann, J. I. J. Am. Chem. Soc. 1997,119, 8921. https://doi.org/10.1021/ja964218q
  8. Cui, S. T.; Cochran, H. D.; Cummings, P. T. J. Phys. Chem. B 1999,103, 4485. https://doi.org/10.1021/jp984147c
  9. Agrawal, R.;Wallis, E. P. Fluid Phase Equilibria 1997, 131, 51. https://doi.org/10.1016/S0378-3812(96)03225-6
  10. Camp, P. J.; Allen, M. P. Mol. Phys. 1996, 88, 1459. https://doi.org/10.1080/00268979609484528
  11. Zou, M; Lim, S. B.; Rizvi, S. S. H.; Zollweg, J. A. In Supercritical Fluid Science and Technology; Johnston, K. P., Penninger, J. M. L., Eds.; ACS Symposium Series No. 406, American Chemical Society: Washington, DC, 1989; Chapter 8.
  12. Murthy, C. S.; Singer, K. Mol. Phys. 1981, 44, 135. https://doi.org/10.1080/00268978100102331
  13. Jorgensen, W. L. J. Phys. Chem. 1986, 90, 1276. https://doi.org/10.1021/j100398a015
  14. Moon, S. D.; Moon, B. K. Bull. Korean Chem. Soc. 2000, 21, 1133.
  15. Smit, B.; Siepmann, J. I. J. Phys. Chem. 1994, 98, 8442. https://doi.org/10.1021/j100085a027
  16. Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic Press: 1996.
  17. Smith, W.; Fincham, D. CCPS-Program Library; Daresbury, UK; Science and Engineering Council: Daresbury Laboratory, 1982.
  18. Hong, J. PL; Kobayashi, R. Fluid Phase Equilibria 1988, 41, 269. https://doi.org/10.1016/0378-3812(88)80011-6
  19. Day, C. Y.; Chang, C. J.; Chen, C. Y. J. Chem. Eng Data 1999, 44, 365. https://doi.org/10.1021/je9804890
  20. Suzuki, K.; Sue, PL; Itou, M.; Smith, R. L.; Inomata, PL; Arai, K.; Saito, S. J. Chem. Eng. Data 1990, 35, 63. https://doi.org/10.1021/je00059a020
  21. Freitas, L. C. G.; Cordeiro, J. M. M.; Garbujo, F. L. L. J. Mol. Liquids 1999, 79,1. https://doi.org/10.1016/S0167-7322(98)00098-1
  22. Gao, J.; Habibollazadeh, D.; Shao, L. J. Phys. Chem. 1995, 99, 16460. https://doi.org/10.1021/j100044a039

Cited by

  1. Molecular simulation study of hydrogen bonding mixtures and new molecular models for mono- and dimethylamine vol.263, pp.2, 2002, https://doi.org/10.1016/j.fluid.2007.10.003
  2. Solvation and Solvatochromism in CO2-Expanded Liquids. 3. The Dynamics of Nonspecific Preferential Solvation vol.112, pp.47, 2002, https://doi.org/10.1021/jp805620q