• 제목/요약/키워드: Monte-Carlo Modeling

검색결과 282건 처리시간 0.03초

Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation study

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1947-1954
    • /
    • 2021
  • In the nuclear medicine imaging, quality control (QC) process using quadrant bar phantom is fundamental aspect of evaluating the spatial resolution. In addition, QC process of gamma camera is performed by daily or weekly. Recently, Monte Carlo simulation using the Geant4 application for tomographic emission (GATE) is widely applied in the pre-clinical nuclear medicine field for modeling gamma cameras with pixelated cadmium telluride (CdTe) semiconductor detector. In this study, we modeled a pixelated CdTe semiconductor detector and quadrant bar phantom (0.5, 1.0, 1.5, and 2.0 mm bar thicknesses) using the GATE tool. Similarity analysis based on correlation coefficients and peak signal-to-noise ratios was performed to compare image qualities for various source to collimator distances (0, 2, 4, 6, and 8 cm) and collimator lengths (0.2, 0.4, 0.6, 0.8, and 1.0 cm). To this end, we selected reference images based on collimator length and source to collimator distance settings. The results demonstrate that as the collimator length increases and the source to collimator distance decreases, the similarity to reference images improves. Therefore, our simulation results represent valuable information for the modeling of CdTe-based semiconductor gamma imaging systems and QC phantoms in the field of nuclear medicine.

몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구 (A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method)

  • 이채연;안승만
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.16-41
    • /
    • 2020
  • 실제 공간의 분포 또는 양적 속성을 대변하는 지리정보 입력은 지구시스템 모의 내에서 주요 관심사가 되고 있다. 많은 연구에서 다양한 격자 해상도에서의 지표면 특성에 대한 부정확한 추정이 모델링 결과를 크게 바꾸는 것으로 나타났다. 따라서, 이 논문은 도시지역 건물들의 분포와 면적·체적 속성을 반영하기 위해서, 항공라이다로 수집된 3DPC(three-dimensional point cloud) 샘플링 체계에 Monte Carlo Integration(MCI) 기법 기반 공간확률(spatial probability)을 적용을 제안하였다. 건물 식별과 관련해 공간확률(SP) 임계치, 격자 크기, 3차원점군 밀도 세 인자의 결정규칙 적용 결과가 비교되었다. 연구 결과, 건물의 격자가 커짐에 따라 식별되는 건물의 면적 속성이 증가하였다. 공간 모델링 및 분석의 신뢰성을 높이기 위해서는 샘플링 체계에서의 결정규칙을 사용하여 건물의 면적 속성을 조정하는 것이 권장된다. 제안된 방법은 모델링 분야가 요구하는 크고 작은 격자의 변화에서도 일정하게 건물 면적 속성이 유지되도록 지원할 것이다.

Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사 (A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code)

  • 신정욱;심현하;곽정원;김동욱;박성용;조관호;이세병
    • 한국의학물리학회지:의학물리
    • /
    • 제18권4호
    • /
    • pp.226-232
    • /
    • 2007
  • 국립암센터에 설치된 양성자 치료기의 빔 전달 시스템에 대하여 Geant4 코드를 이용하여 몬테카를로 전산모사를 수행하였고, 선량검증 도구로써의 이용 가능성에 대하여 연구하였다. 몬테카를로 기술을 기반으로 하는 선량계산은 물질내의 선량분포를 이해하는 데 가장 정확한 방법으로 알려져 있다 외부조사 방사선치료에 있어서 이 방법의 장점을 극대화 하기 위해서는, 빔이 지나가는 곳에 놓여진 노즐 구성요소들의 정확한 모델링과 더불어 초기빔 특성파악은 무엇보다 중요하다. 국립암센터에 설치된 양성자 치료기는 총 3가지 형태-double/single scattering, uniform scanning and pencil-beam scanning-로 치료빔을 조사할 수 있으며, 본 연구진은 Geant4.8.2 코드를 기반으로 double/single scattering 모드를 구성하는 모든 노즐구성요소들에 대하여 모델링 하였다. 특정 치료감이에 대하여 실험치와 일치하는 전산모사의 결과를 얻었다 본 기관에 설치된 양성자치료기에 대한 몬테카를로 전산모사에 대한 기반을 성공적으로 구축하였고, 치료빔에 대하여 정밀한 선량측정에 이용할 수 있다. 치료빔의 전 에너지 영역에 걸쳐 추가적인 커미셔닝을 수행할 것이다.

  • PDF

UHF대역에서의 SEAMCAT을 이용한 간섭 분석기법에 관한 연구 (A study on the Analysis Method of Interference using SEAMCAT in UHF band)

  • 조승일;장경승;강성철;이주환;강정진;최규석;차재상;김성권
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.119-125
    • /
    • 2008
  • 본 논문에서는 가시거리가 확보가 되는 임의의 산간지형에서 UHF대역의 주파수 환경의 모델링을 제안한다. UHF대역을 사용하는 송신국은 Wt(Wanted Transmitter)로 정의하고 수신국은 Vr(Victim Receiver)로 정의하여 Victim link로 설정하며, 간섭원은 It(Interference Transmitter)와 Wr (Wanted Receiver)으로 정의하여 Interference link로 설정한다. Monte-Carlo 방식을 이용하는 전파간섭분석 시뮬레이션 툴인 SEAMCAT(Spectrum Engineering Advanced Monte Caelo Analysis Tool)을 사용하여 모델링된 주파수 환경을 시뮬레이션 한 결과와 임의의 산간지형에서 측정한 실측데이터를 비교하였다. SEAMCAT의 dRSS(desired Received Signal Strength)계산 값은 지형에 의해 생기는 손실이 있기 때문에 UHF 대역에서 수신 전력에서 70% 오차를 나타냄을 알 수 있었다. 따라서 지형에 의한 간섭회절만큼의 송신전력을 줄임으로써 실제 전파 환경과 유사한 가정을 할 수 있게 하였다. 본 논문에 제시된 UHF 주파수 환경에서의 시뮬레이션 모델링은 UHF 주파수 재배치 및 간섭분석 연구에 기여할 것으로 기대된다.

  • PDF

Overcoming the challenges of Monte Carlo depletion: Application to a material-testing reactor with the MCS code

  • Dos, Vutheam;Lee, Hyunsuk;Jo, Yunki;Lemaire, Matthieu;Kim, Wonkyeong;Choi, Sooyoung;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1881-1895
    • /
    • 2020
  • The theoretical aspects behind the reactor depletion capability of the Monte Carlo code MCS developed at the Ulsan National Institute of Science and Technology (UNIST) and practical results of this depletion feature for a Material-Testing Reactor (MTR) with plate-type fuel are described in this paper. A verification of MCS results is first performed against MCNP6 to confirm the suitability of MCS for the criticality and depletion analysis of the MTR. Then, the dependence of the effective neutron multiplication factor to the number of axial and radial depletion cells adopted in the fuel plates is performed with MCS in order to determine the minimum spatial segmentation of the fuel plates. Monte Carlo depletion results with 37,800 depletion cells are provided by MCS within acceptable calculation time and memory usage. The results show that at least 7 axial meshes per fuel plate are required to reach the same precision as the reference calculation whereas no significant differences are observed when modeling 1 or 10 radial meshes per fuel plate. This study demonstrates that MCS can address the need for Monte Carlo codes capable of providing reference solutions to complex reactor depletion problems with refined meshes for fuel management and research reactor applications.

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.

Development and verification of a novel system for computed tomography scanner model construction in Monte Carlo simulations

  • Ying Liu;Ting Meng ;Haowei Zhang ;Qi Su;Hao Yan ;Heqing Lu
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4244-4252
    • /
    • 2022
  • The accuracy of Monte Carlo (MC) simulations in estimating the computed tomography radiation dose is highly dependent on the accuracy of CT scanner model. A system was developed to observe the 3D model intuitively and to calculate the X-ray energy spectrum and the bowtie (BT) filter model more accurately in Monte Carlo N-particle (MCNP). Labview's built-in Open Graphics Library (OpenGL) was used to display basic surfaces, and constructive solid geometry (CSG) method was used to realize Boolean operations. The energy spectrum was calculated by simulating the process of electronic shooting and the BT filter model was accurately modeled based on the calculated shape curve. Physical data from a study was used as an example to illustrate the accuracy of the constructed model. RMSE between the simulation and the measurement results were 0.97% and 0.74% for two filters of different shapes. It can be seen from the comparison results that to obtain an accurate CT scanner model, physical measurements should be taken as the standard. The energy spectrum library should be established based on Monte Carlo simulations with modifiable input files. It is necessary to use the three-segment splicing modeling method to construct the bowtie filter model.

Wireless LAN을 위한 2차원 나선형 인덕터의 PEEC 모델링 기법 연구 (Study on PEEC modeling methodology on 2-D Spiral Inductors for Wireless LAN application)

  • 오창훈;신동욱;이규복;김종규;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.669-672
    • /
    • 2003
  • With the advances on wireless internet technology, many research on minimization of wireless LAN is on the progress. To apply passive components in MCM, characteristic analysis of passive components is essential. In this paper, three square spiral inductors were modeled by HSPICE using PEEC (Partial Element Equivalent Circuit) method. Afterwards, Monte-Carlo analysis was performed to evaluate the optimized parameters. This work will give an idea on PEEC modeling of spiral inductor, and enable researchers with predictive data before large scale manufacturing.

  • PDF

컴퓨터 통신망의 모델링을 위한 비정상 상태에서의 큐잉 근사화 (Transient Queueing Approximation for Modeling Computer Networks)

  • Lee, Bong-Hwan
    • 전자공학회논문지A
    • /
    • 제32A권4호
    • /
    • pp.15-23
    • /
    • 1995
  • In this paper, we evaluate the performance of a transient queueing approximation when it is applied to modeling computer communication networks. An operational computer network that uses the ISO IS-IS(Intermediate System-Intermediate System) routing protocol is modeled as a Jackson network. The primary goal of the approximation pursued in the study was to provide transient queue statistics comparable in accuracy to the results from conventional Monte Carlo simulations. A closure approximation of the M/M/1 queueing system was extended to the general Jackson network in order to obtain transient queue statistics. The performance of the approximation was compared to a discrete event simulation under nonstationary conditions. The transient results from the two simulations are compared on the basis of queue size and computer execution time. Under nonstationary conditions, the approximations for the mean and variance of the number of packets in the queue erer fairly close to the simulation values. The approximation offered substantial speed improvements over the discrete event simulation. The closure approximation provided a good alternative Monte Carlo simulation of the computer networks.

  • PDF

Molecular Modeling of the Chiral Recognition of Propranolol Enantiomers by a β-Cyclodextrin

  • Kim, Hyun-myung;Jeong, Karp-joo;Lee, Sang-san;Jung, Seun-ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.95-98
    • /
    • 2003
  • Enantioselectivity of the propranolol on β-cyclodextrin was simulated by molecular modeling. Monte Carlo (MC) docking and molecular dynamics (MD) simulations were applied to investigate the molecular mechanism of enantioselective difference of both enantiomeric complexes. An energetic analysis of MC docking simulations coupled to the MD simulations successfully explains the experimental elution order of propranolol enantiomers. Molecular dynamics simulations indicate that average energy difference between the enantiomeric complexes, frequently used as a measure of chiral recognition, depends on the length of the simulation time. We found that, only in case of much longer MD simulations, noticeable chiral separation was observed.