Browse > Article
http://dx.doi.org/10.1016/j.net.2020.12.010

Similarity analysis of pixelated CdTe semiconductor gamma camera image using a quadrant bar phantom for nuclear medicine: Monte Carlo simulation study  

Park, Chan Rok (Department of Radiological Science, Jeonju University)
Kang, Seong-Hyeon (Department of Radiological Science, Gachon University)
Lee, Youngjin (Department of Radiological Science, Gachon University)
Publication Information
Nuclear Engineering and Technology / v.53, no.6, 2021 , pp. 1947-1954 More about this Journal
Abstract
In the nuclear medicine imaging, quality control (QC) process using quadrant bar phantom is fundamental aspect of evaluating the spatial resolution. In addition, QC process of gamma camera is performed by daily or weekly. Recently, Monte Carlo simulation using the Geant4 application for tomographic emission (GATE) is widely applied in the pre-clinical nuclear medicine field for modeling gamma cameras with pixelated cadmium telluride (CdTe) semiconductor detector. In this study, we modeled a pixelated CdTe semiconductor detector and quadrant bar phantom (0.5, 1.0, 1.5, and 2.0 mm bar thicknesses) using the GATE tool. Similarity analysis based on correlation coefficients and peak signal-to-noise ratios was performed to compare image qualities for various source to collimator distances (0, 2, 4, 6, and 8 cm) and collimator lengths (0.2, 0.4, 0.6, 0.8, and 1.0 cm). To this end, we selected reference images based on collimator length and source to collimator distance settings. The results demonstrate that as the collimator length increases and the source to collimator distance decreases, the similarity to reference images improves. Therefore, our simulation results represent valuable information for the modeling of CdTe-based semiconductor gamma imaging systems and QC phantoms in the field of nuclear medicine.
Keywords
Monte Carlo simulation; Quadrant bar phantom for quality control; Similarity analysis; Pixelated cadmium telluride semiconductor detector; Nuclear medicine imaging system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.J. Park, A.R. Yu, Y.J. Lee, Y.S. Kim, H.J. Kim, Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study, J. Inst. Met. 9 (2014) 7001-7018.
2 M.R. Hasan, H.R. khan, R. Rahman, S. Parvez, R. Islam, A.K. Paul, Quality control of gamma camera with SPECT system, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 6 (2017) 225-232.   DOI
3 P.H. Murphy, Acceptance testing and quality control of gamma cameras, including SPECT, J. Nucl. Med. 28 (1987) 1221-1227.
4 B. Kasal, P.F. Sharp, Gamma camera spatial resolution as measured by the bar phantom, Phys. Med. Biol. 30 (1985) 263-266.   DOI
5 A.F. Resch, A. Elia, H. Fuchs, A. Carlino, H. palmans, M. Stock, D. Georg, Evaluation of electromagnetic and nuclear scattering models in, GATE/Geant4 for proton therapy 46 (2019) 2444-2456.
6 H. Wieczorek, A. Goedicke, Analytical model for SPECT detector concepts, IEEE Trans. Nucl. Sci. 53 (2006) 1102-1112.   DOI
7 L.S. Graham, Automatic tuning of scintillation cameras: a review, J. Nucl. Med. Technol. 14 (1986) 105-110.
8 S. Staelens, D. Strul, G. Santinm, M. Koole, S. Vandenberghe, Y. D'Asseler, I. Lemahieu, R. Van de Walle, Monte Carlo simulations of a scintillation camera using GATE: validation and application modelling, Phys. Med. Biol. 48 (2003) 3021-3042.   DOI
9 Y.J. Lee, H.J. Ryu, H.M. Cho, S.W. Lee, Y.N. Choi, H.J. Kim, Optimization of an ultra-high-resolution parallel-hole collimator for CdTe semiconductor SPECT system, J. Inst. Met. 8 (2013) C01044.
10 Y.J. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods A. 713 (2013) 33-39.   DOI
11 K. Ogawa, N. Ohumura, H. Iida, K. Nakamura, T. Nakahara, A. Kubo, Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector, Ann. Nucl. Med. 23 (2009) 763-770.   DOI
12 T.E. Peterson, L.R. Furenlid, SPECT detectors: the anger camera and beyond, Phys. Med. Biol. 56 (2011). R1445-R182.
13 C. Scheiber, C.C. Giakos, Medical applications of CdTe and CdZnTe detectors, Nucl. Instrum. Methods A 458 (2001) 12-25.   DOI
14 R. Accorsi, S.D. Metzler, Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator, IEEE Trans. Med. Imag. 23 (2004) 750-763.   DOI
15 Y. Morimoto, Y. Ueno, W. Takeuchi, S. Kojima, K. Matsuzaki, T. Ishitsu, K. Umegaki, Y. Kiyanagi, N. Kubo, C. Katoh, T. Shiga, H. Shirato, N. Tamaki, Development of a 3D brain PET scanner using CdTe semiconductor detectors and its first clinical application, IEEE Trans. Nucl. Sci. 58 (2011) 2181-2189.   DOI
16 M. Kobayashi, H. Wakabayashi, D. Kayano, T. Konishi, H. Kojima, H. Yoneyama, K. Okuda, H. Tsushima, M. Onoguchi, K. Kawai, S. Kinuya, Application of a medium-energy collimator for I-131 imaging after ablation treatment of differentiated thyroid cancer, Ann. Nucl. Med. 28 (2014) 551-558.   DOI
17 S. Staelens, D. Strul, G. Santin, S. Bandenberghe, M. Koole, Y. D'Asseler, I. Lemahieu, R. Van de Walle, Monte Carlo simulations of a scintillation camera using GATE: validation and application modeling, Phys. Med. Biol. 48 (2003) 3021-3042.   DOI
18 R. Barquero, H.P. Garcia, m.G. incio, P. Minguez, A. Cardenas, D. Martinez, M. Lassmann, 131I activity quantification of gamma camera planar images, Phys. Med. Biol. 62 (2017) 909-926.   DOI
19 S. Staelens, K. Vunckx, J.D. Beenhouwer, F. Beekman, Y. D'Asseler, J. Nuyts, I. lemahieu, GATE simulations for optimization of pinhole imaging, Nucl. Instrum. Methods A 569 (2006) 359-363.   DOI
20 H. Lida, K. Ogawa, Comparison of a pixelated semiconductor detector and a non-pixelated scintillation detector in pinhole SPECT system for small animal study, Ann. Nucl. Med. 25 (2011) 143-150.   DOI
21 G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M.V. Martins, V. Breton, C. Morel, GATE: a geant4-based simulation platform for PET and SPECT integrating movement and time management, IEEE Trans. Nucl. Sci. 50 (2003) 1516-1521.   DOI