• Title/Summary/Keyword: Monte Carlo model

Search Result 1,449, Processing Time 0.031 seconds

Monte Carlo simulation of the estimators for nonlinear regression model (비선형 회귀모형 추정량들의 몬데칼로 시뮬레이션에 의한 비교)

  • 김태수;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.6-10
    • /
    • 2000
  • In regression model we estimate the unknown parameters using various methods. There are the least squares method which is the most general, the least absolute deviation, the regression quantile and the asymmetric least squares method. In this paper, we will compare each others with two case: to begin with the theoretical comparison in the asymptotic sense, and then the practical comparison using Monte Carlo simulation for a small sample size.

  • PDF

A study on synthetic risk management on market risk of financial assets(focus on VaR model) (시장위험에 대한 금융자산의 종합적 위험관리(VaR모형 중심))

  • 김종권
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.43-57
    • /
    • 1999
  • The recent trend is that risk management has more and more its importance. Neverthless, Korea's risk management is not developed. Even most banks does gap, duration in ALM for risk management, development and operation of VaR stressed at BIS have elementary level. In the case of Fallon and Pritsker, Marshall, gamma model is superior to delta model and Monte Carlo Simulation is improved at its result, as sample number is increased. And, nonparametric model is superior to parametric model. In the case of Korea's stock portfolio, VaR of Monte Carlo Simulation and Full Variance Covariance Model is less than that of Diagonal Model. The reason is that VaR of Full Variance Covariance Model is more precise than that of Diagonal Model. By the way, in the case of interest rate, result of monte carlo simulation is less than that of delta-gamma analysis on 95% confidence level. But, result of 99% is reversed. Therefore, result of which method is not dominated. It means two fact at forecast on volatility of stock and interest rate portfolio. First, in Delta-gamma method and Monte Carlo Simulation, assumption of distribution affects Value at Risk. Second, Value at Risk depends on test method. And, if option price is included, test results will have difference between the two. Therefore, If interest rate futures and option market is open, Korea's findings is supposed to like results of other advanced countries. And, every banks try to develop its internal model.

  • PDF

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

Monte-Carlo Simulation and measuring for Error Analysis of 3-axis SCARA Robot using Observability (관측성을 이용한 3축 SCARA Robot의 오차분석을 위한 Monte-Carlo simulation 및 측정)

  • Ju, Ji-Hun;Chung, Won-Jee;Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2008
  • This paper aims at finding out dominant robot configurations with maximal position errors, which can be attributed to the parameter errors, by using Monte-Carlo simulation for error analysis of a 3-axis SCARA(Selective Compliance Assembly Robot Arm) type robot. In particular, the Monte-Carlo simulation is used for virtually measuring on the position errors, instead of physical measurement. In order to measure the observability of the model parameters with respect to a set of robot configurations, we propose the observability index which is defined as the product of singular values for error propagation matrices. Thus the index can be used for discriminating dominant robot configurations from a set of simulated ones in conjunction with standard deviation of positional errors, This paper analyzed error by robot positional error.

Estimation of Defect Clustering Parameter Using Markov Chain Monte Carlo (Markov Chain Monte Carlo를 이용한 반도체 결함 클러스터링 파라미터의 추정)

  • Ha, Chung-Hun;Chang, Jun-Hyun;Kim, Joon-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.99-109
    • /
    • 2009
  • Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear closed form. In this paper, a Bayesian approach using Markov Chain Monte Carlo is proposed to estimate the clustering parameter. To find an appropriate estimation method for the clustering parameter, two typical estimators, the method of moments estimator and the maximum likelihood estimator, and the proposed Bayesian estimator are compared with respect to the mean absolute deviation between the real yield and the estimated yield. Experimental results show that both the proposed Bayesian estimator and the maximum likelihood estimator have excellent performance and the choice of method depends on the purpose of use.

A Study on Algorism for Evaluating Power Wheeling Effects using Monte-Carlo Simulation (Monte Carlo Simulation을 이용한 Power Wheeling 영향평가 알고리즘에 관한 연구)

  • Cho, Jae-Han;Nam, Kwang-Woo;Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1111-1113
    • /
    • 1999
  • This paper presents a algorism for evaluating contingency case power wheeling effects using Monte-Carlo simulation The effects of wheeling on generating cost, transmission losses, and system security are considered. For a specific operating condition, the effects are quantified by the sensitivity of specific quantities of interest with respect to wheeling level. This model is utilized within a Monte-Carlo simulation to calculate probability distribution functions of the incremental effects of wheeling on operating cost, transmission losses, and system security. The model and solution methods are applied on a IEEE RTS-96 system power system and the results are presented.

  • PDF

A Study on Uncertainty Analyses of Monte Carlo Techniques Using Sets of Double Uniform Random Numbers

  • Lee, Dong Kyu;Sin, Soo Mi
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.27-36
    • /
    • 2006
  • Structural uncertainties are generally modeled using probabilistic approaches in order to quantify uncertainties in behaviors of structures. This uncertainty results from the uncertainties of structural parameters. Monte Carlo methods have been usually carried out for analyses of uncertainty problems where no analytical expression is available for the forward relationship between data and model parameters. In such cases any direct mathematical treatment is impossible, however the forward relation materializes itself as an algorithm allowing data to be calculated for any given model. This study addresses a new method which is utilized as a basis for the uncertainty estimates of structural responses. It applies double uniform random numbers (i.e. DURN technique) to conventional Monte Carlo algorithm. In DURN method, the scenarios of uncertainties are sequentially selected and executed in its simulation. Numerical examples demonstrate the beneficial effect that the technique can increase uncertainty degree of structural properties with maintaining structural stability and safety up to the limit point of a breakdown of structural systems.

Real Protein Prediction in an Off-Lattice BLN Model via Annealing Contour Monte Carlo

  • Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.627-634
    • /
    • 2009
  • Recently, the general contour Monte Carlo has been proposed by Liang (2004) as a space annealing version(ACMC) for optimization problems. The algorithm can be applied successfully to determine the ground configurations for the prediction of protein folding. In this approach, we use the distances between the consecutive $C_{\alpha}$ atoms along the peptide chain and the mapping sequences between the 20-letter amino acids and a coarse-grained three-letter code. The algorithm was tested on the real proteins. The comparison showed that the algorithm made a significant improvement over the simulated annealing(SA) and the Metropolis Monte Carlo method in determining the ground configurations.

A Study on Real Option Valuation for Technology Investment Using the Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 기술투자 실물옵션평가에 대한 연구)

  • Sung Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.3
    • /
    • pp.533-554
    • /
    • 2004
  • Real option valuation considers the managerial flexibility to make ongoing decisions regarding implementation of investment projects and deployment of real assets. The appeal of the framework is natural given the high degree of uncertainty that firms face in their technology investment decisions. This paper suggests an algorithm for estimating volatility of logarithmic cash flow returns of real asset based on Monte Carlo simulation. This research uses a binomial model to obtain point estimate of real option value with embedded expansion option case and provides also an array of numerical results to show the interval estimation of option value using Monte Carlo simulation.

  • PDF

Extraction of Hydrodynamic Model Parameters for GaAs Using the Monte Carlo Method (Monte Carlo Method에 의한 GaAs의 Hydrodynamic Model Parameter의 추출)

  • Park, Seong-Ho;Han, Baik-Hyung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.63-71
    • /
    • 1990
  • The hydrodynamic model parameters for the submicron GaAs simulation are calculated using the Monte Carlo method. $\Gamma$, L-, and X-valleys are included in the conduction band of GaAs, and polar optic phonon, acoustic phonon, equivalent intervalley, non-equivalent intervalley, ionized impurity, and piezoelectric scattering are taken into account. The velocity-electric field strength curve obtained in this paper is in good agreement with experimental one. We present the results in tabular form so that other participants can make use of them to simulate the submicron GaAs devices by the hydrodynamic model.

  • PDF