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Abstract 
 
Structural uncertainties are generally modeled using probabilistic approaches in order to quantify uncertainties in behaviors of structures. This 
uncertainty results from the uncertainties of structural parameters. Monte Carlo methods have been usually carried out for analyses of uncer-
tainty problems where no analytical expression is available for the forward relationship between data and model parameters. In such cases 
any direct mathematical treatment is impossible, however the forward relation materializes itself as an algorithm allowing data to be calculated 
for any given model. This study addresses a new method which is utilized as a basis for the uncertainty estimates of structural responses. It 
applies double uniform random numbers (i.e. DURN technique) to conventional Monte Carlo algorithm. In DURN method, the scenarios of 
uncertainties are sequentially selected and executed in its simulation. Numerical examples demonstrate the beneficial effect that the technique 
can increase uncertainty degree of structural properties with maintaining structural stability and safety up to the limit point of a breakdown of 
structural systems. 
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1. INTRODUCTION 
 

Numerical analysis of structural responses involves 
the consideration of some impacts, for example the impact 
of a standard on numerical properties of applied structural 
parameters. In order to perform the calculation, analysts 
must first: 1) specify the equation or model that will be 
used; 2) define the quantities in the equation; and 3) pro-
vide numerical values for each quantity. In the simplest, 
the equation is unambiguous (i.e. this contains all relevant 
quantities and on others), each quantity has a single nu-
merical value, and the calculation results in a single value. 
However, non-ambiguity and precision of structural prop-
erties are rarely the case. In almost all cases the model 
and/or the numerical values for each quantity in the model 
are not completely known (i.e. there is uncertainty) and 
depend upon other conditions (i.e. there is variability). 

The numerical analysis involves accounting for the 
uncertainty and the variability. While the simplest analysis 
involves a single numerical value for each quantity in a 
calculation, arguments can arise about what the appropri-
ate value is for each quantity. Explicit analysis of the un-
certainty and the variability is intended to provide more 
complete information to the decision process. 

This flexibility in structural modeling has led to two 
areas, which can and must be considered; 

1) Computational accuracy considering numerical 
round-off and ill conditioning. 

2) Quantification of structural response uncertainties 
due to uncertain properties of the structural model. 

In the first area, the structural input is assumed to be 
precise and the error to lie only in the numerical computa-
tions. The objective of such studies is to contain the errors 
within set bounds. The second area assumes that the ma-
chine errors are contained but opens for consideration of 

the measurement of the structural parameters as probabilis-
tic and non-probabilistic methods. 

In non-probabilistic methods (i.e. interval analysis in-
troduced by Moore (1966)), it is possible to apply models 
of the uncertainty, which are independent of such detailed 
knowledge. However it is difficult to apply these results to 
practical engineering problems due to the complexity of 
the algorithm. 

Since the structural parameters are random variables 
in probabilistic methods, then the structural response quan-
tities (i.e. internal force, displacement, stress, strain and so 
on) are also random variables and related to the structural 
parameters (i.e. loading condition, Young’s modulus, 
cross-sectional area, length of member and so on). How-
ever, given that only a small amount of the statistical in-
formation about the initial data such as structural parame-
ters and loading conditions can be known in a few special-
ized cases, indeed, the probabilistic approaches cannot 
deliver reliable solutions at the required accuracy without 
sufficient experience and experimental data to prove the 
valid assumptions made regarding the probability densities 
of random variables or functions involved. 

A Monte Carlo method of the probabilistic ap-
proaches has a long history, but its application to the solu-
tion of scientific problems begins with Ulam et al. (1947) 
who used the Monte Carlo method in nuclear reaction 
studies. The name ‘the Monte Carlo method’ was first used 
by them. The method is executed by appropriate stochastic 
models of statistic extractions using random variables. One 
advantage of the approach is simplicity of the calculation 
algorithm contrary to interval analysis. Another one is to 
be able to obtain the error of calculation. Therefore the 
method can be suitable for engineering problem admitting 
computational error of 5~10%. 
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In this paper we show how one can quantify response 
uncertainties and also make probabilistic statements about 
prescribed levels of structural responses as a modified ver-
sion of conventional Monte Carlo simulation. Contrary to 
classical Monte Carlo approach, this method does not re-
quire many statistic data in order to measure the uncer-
tainty model. The numerical algorithm for structural analy-
sis is not complex and complicate in the comparisons with 
interval method. 

For the purpose of making efficiency of this modified 
method, sets of Double Uniform Random Number (i.e. 
DURN) are devised for analytical and numerical processes. 
In DURN technique, conventional table of uniform ran-
dom numbers is modified as the table with 100 groups, 
which include 5 random numbers in each group. In the 
modified table, statistical properties of the combination of 
each group are calculated through sequential generation 
processes. It is assumed that this is similar to uncertainty 
characteristics of structural parameters which are random 
variables in Monte Carlo analysis algorithm. Since the 
generation of random numbers occurs repetitively in 
Monte Carlo analysis, this processes are regarded as the 
DURN technique for quantities of response uncertainties.  

In this study, a plane truss modeled as 10 degrees of 
freedom is considered as a numerical example. Sequential 
scenarios for the loading conditions, Young’s modulus, the 
length of member and the cross-sectional area are assumed 
through the application of sequential generation of uniform 
random number in order to describe uncertainties of struc-
tural response. Finally, this study presents the numerical 
dependence of structural parameters and applied loads by 
the uncertainty of structural responses. 

 
2. MATHEMATICAL BACKGROUND 

 
In analytical probabilistic methods, we can consider 

Taylor’s series expansion to formulate a linear relationship 
between the response random variables and the random 
structural parameters. In order to understand such a 
mathematical model, we consider the notion of Taylor’s 
series expansion. 

Consider a single function which is dependent on n  
parameters, na , ,a ,a ⋅⋅⋅21 , that is, random variables. 
Therefore, the m  functions of these parameters  

)a , ,a ,a(f n⋅⋅⋅21  are also sets of random variables. Now 
let ja  be the mean of the random variables ja , and then 
Taylor’s series expansion about the mean of random vari-
ables, say na , ,a ,a ⋅⋅⋅21  is 
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In a linear statistical model the higher terms than linear 
term are neglected. The corresponding matrix equation for 
m  functions of n  parameters is 
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The mean value of each random function is obtained by 
taking the expected value of Eq. (2) and is 
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Since each term { }aaE −  is zero, it follows that 
{ } { })a(f)a(fE =      (4) 

In the numerical probabilistic method, computationally 
these random numbers of structural parameters are then 
substituted into the response equation to obtain a set of 
random numbers that reflect the uncertainty in the struc-
tural response. Most problems in structural analysis are 
solved using the finite element method, wherein the force 
equilibrium equations governing the displacement of a 
structure are written as follows: 

[ ]{ } { }FuK =                      (5) 
where K  is the symmetric stiffness matrix, u  is the 
vector of displacements for each degree of freedom, and 
F  is the vector of applied forces. Using the same general 
notation for these random variables na , ,a ,a ⋅⋅⋅21  and 
noting that the random functions under consideration are 
generalized displacements, one may be rewrite Eq. (2) as  
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The mean response is the solution to matrix equation and 
is 

{ } { } [ ] { }FK)a(u)a(uE 1−==             (7) 
with ja  substituted everywhere for ja  before solving. 
The values of { })a(u  depend on structural parameter vec-
tors Φ  with bound error or uncertainties. But it is as-
sumed that we have no data about the value of Φ  in this 
paper, and uncertainty values of structural parameters is 
replaced by generation values of random number through 
the Monte Carlo simulation. The probability density func-
tion is a powerful mathematical tool which enables one to 
perform problems of the uncertainty and variability in the 
structural analysis. Figure 1 shows a general shape of the 
cumulative distribution function (i.e. CDF). 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
We define the mean of Φ  by 

2/)ba(M ΦΦΦ +=              (8) 
and its variance is 

Figure 1. Cumulative distribution function 
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122 /)ab(V ΦΦΦ −=      (9) 
In a similar form, they are expressed as  

ΦΦΦ 3VMa −=     (10) 
ΦΦΦ 3VMb +=     (11) 

where ΦΦ ba <  is assumed. 
In order to generate a new uniform random number ΦX  
between Φa  and Φb , the i th generator of the Monte 
Carlo simulation is executed by Eq. (12) as introduced by 
Hart (1982). 
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where, 
)i(

P  is the probability values of uniform random 

number values between 0 and 1. 
)i(

XΦ  denote the value of 
the random number for a uniform PDF over the range Φa  
to Φb , which are listed by the Table 1. 
The equations of the mean and variance of ΦX , obtained 
by calculation of the n th uniform random number is re-
spectively written as follows. 
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In case that Young’s modulus E , cross-sectional area A , 
and element length L  are deterministic and the applied 
load P  is the random parameter in linear truss system, 
the values of random displacements is expressed as Eq. 
(15) according to the mean of arithmetic calculation and 
harmonic combination. 
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where, )I(X  denote the random numbers obtained by 
Monte Carlo simulation. 0α ≥  is the weighting coeffi-
cient in order to indicate actual structural response values 
which are reversely proportional to axial rigidity. From Eq. 
(15), the quadratic operation of the left and right term as 
follows is considered for the purpose of similarity of solu-
tions. 
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Therefore final random displacements are formulated as 
Eq. (17) for Monte Carlo simulation. 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡×=

EA
P(I)LαIXIU 4           (17) 

These values of the response formulation which are de-
vised in this study are analyzed by using the algorithm 
described in Section 3. If any of the other parameters on 
the response system were random, then the flow chart of 
Figure 4 would be modified to reflect the generation of a 
set of random numbers for each random variable. 

3. THE GENERATION OF DOUBLE UNIFORM RAN-
DOM NUMBERS AND MONTE CARLO ALGO-
RITHMS 

 
The random structural response set is then analyzed by 

using techniques related with a mathematical function, that 
is, a probability distribution function (i.e. PDF). This type 
of analysis is called a Monte Carlo analysis. Monte Carlo 
analysis is a powerful engineering tool that enables one to 
perform a statistical analysis of the uncertainty in struc-
tural engineering problems, being particularly useful for 
complex problems where numerous random variables are 
related through nonlinear equation. It is often helpful to 
visualize a Monte Carlo analysis as an experiment that is 
performed by a computer rather than in a structural engi-
neering laboratory. 

The fundamental step in a Monte Carlo analysis is the 
generation of a set of random numbers. Figure 2 illustrates 
the generation of double uniform random numbers be-
tween 0 and 1. Contrary to conventional Monte Carlo 
simulation using only grouping 1, both grouping 1 and 2 
are executed through the sequential method in this present 
approach. 

The unit of sequential five random numbers of grouping 
1 is used for the construction of grouping 2, for example a 
grouping 2-1 has ten random numbers and a grouping 2-n 
(n=constant) consists of 5×(n+1) uniform random numbers. 
The groupings have repetitive numbers with other group-
ings. The numbers is named as dual uniform random num-
bers. 

Table 1 lists the means and standard deviations of uni-
form random numbers which are obtained by the genera-
tion of Figure 2. This table is reproduced with permission 
from the RAND Corporation, A Million Random Digits 
with 100,000 Normal Deviates, The Free Press, Glencoe, 
IL. These random numbers can be used for any range of 
the uniform probability density function if one scales them 
properly. In this paper they are scaled by 10-5. 

Figure 3 shows convergence of the mean and standard 
deviation, while the number of the groupings increases in 
case of 2nd groupings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Convergence, Mean and Standard Deviation for generation 
values of one set of n Dual Uniform Random Number for each pa-

rameter in the response by processes of 2nd grouping. 
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It can be seen that the means and standard deviations 
become converged after some generation of the groupings. 

These random numbers can be mechanically or elec-
tronically generated, however today in practice most ran-
dom number generation is accomplished by using digital 
computer algorithm for the random number generation. 
Uniform random numbers have characteristics that for a 
selected range of values (i.e. 0.0 to 1.0) the generated ran-
dom numbers are equally likely to occur anywhere in the 
range. 

Figure 4 shows relationships between mean and stan-
dard deviation in DURN of grouping 2 (i.e. 2nd group) and 
typical random numbers of grouping 1 (i.e. 1st group). It 
can be found that the relationship is more stable in group-
ing 2 than in grouping 1. 

 
 

The grouping method of the random number used in this 
process is applied to numerical examples of the structural 
analysis to consider uncertainty properties of structural 
parameters. Basically it is assumed that characteristics of 
this uncertainty are expressed as dual uniform random 
numbers. 

According to this method, modified parameters have an 
influence on the uncertain behaviors of structures using 
numerical approach. The Monte Carlo analysis involves 
the generation of one set of n  random numbers for each 
random parameter in the equation system. The response 
equation is then solved by using each random number in 
the set. Therefore, the response equation is solved n times; 
i.e. i = 1, 2, … , n and the algorithm is shown to Figure 5. 
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Figure 2. The generation of double uniform random numbers 
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Table 1. Uniform Random Numbers between 0 and 1.0 by the 1st and 2nd grouping 

Uniform Random Number 1st group 2nd group 

 

1st 

Group M of RN STD of RN

2nd 

Group M of RN STD of RN

0.52478 0.80249 0.94132 0.17938 0.58815 1 0.68456 0.17938 1 0.68456 0.17938

0.69379 0.75228 0.14327 0.38270 0.06070 2 0.51126 0.38270 1-2 0.59791 0.2962 

0.60929 0.41999 0.75908 0.33985 0.03428 3 0.54717 0.33985 1-3 0.58100 0.30002

0.02333 0.55696 0.74838 0.34966 0.87260 4 0.49192 0.34966 1-4 0.55873 0.30599

0.73595 0.66224 0.48078 0.22980 0.47813 5 0.49976 0.22980 1-5 0.54693 0.28898

0.39404 0.84131 0.65097 0.27269 0.11997 6 0.49036 0.27269 1-6 0.53750 0.28253

0.89716 0.85258 0.45790 0.18956 0.80321 7 0.78694 0.18956 1-7 0.57314 0.28312

0.16964 0.03060 0.46517 0.19071 0.11580 8 0.23920 0.19071 1-8 0.53140 0.29346

0.92862 0.27419 0.01450 0.35661 0.66047 9 0.49796 0.35661 1-9 0.52768 0.29666

0.71899 0.36567 0.86135 0.19715 0.75099 10 0.70371 0.19715 1-10 0.54528 0.29163

0.22835 0.16089 0.15190 0.33379 0.01919 11 0.28546 0.33379 1-11 0.52166 0.30184

0.89366 0.79546 0.93484 0.21588 0.44497 12 0.81065 0.21588 1-12 0.54575 0.30501

0.72559 0.12790 0.62356 0.31782 0.01736 13 0.41259 0.31782 1-13 0.53693 0.30554

0.25192 0.67106 0.46105 0.25724 0.93170 14 0.55555 0.25724 1-14 0.53693 0.30076

0.29104 0.21746 0.26348 0.31040 0.96995 15 0.42615 0.31040 1-15 0.52955 0.30054

0.88593 0.64236 0.63684 0.35699 0.06462 16 0.47215 0.35699 1-16 0.52596 0.30209

0.28633 0.16576 0.04380 0.40796 0.92435 17 0.45610 0.40796 1-17 0.52185 0.30663

0.90116 0.35414 0.93209 0.41137 0.04688 18 0.63485 0.41137 1-18 0.52813 0.31149

0.25355 0.80915 0.54579 0.23222 0.26430 19 0.45118 0.23222 1-19 0.52408 0.30734

0.68860 0.46306 0.49654 0.15830 0.37473 20 0.55458 0.15830 1-20 0.52560 0.30124

0.33307 0.01964 0.08425 0.15429 0.22225 21 0.20726 0.15429 1-21 0.51045 0.30321

0.50240 0.65528 0.49875 0.15523 0.21962 22 0.38249 0.15523 1-22 0.50463 0.30119

0.19902 0.87990 0.27342 0.39601 0.91578 23 0.47056 0.39601 1-23 0.50315 0.30379

0.93932 0.73369 0.29798 0.27507 0.35494 24 0.55007 0.27507 1-24 0.50510 0.30173

0.59346 0.81973 0.33935 0.31474 0.19524 25 0.39549 0.31474 1-25 0.50072 0.30172

0.71327 0.26803 0.50298 0.27037 0.80215 26 0.64981 0.27037 1-26 0.50645 0.30100

0.77208 0.27023 0.06893 0.29891 0.23677 27 0.27308 0.29891 1-27 0.49781 0.30306

0.77618 0.80332 0.83758 0.38293 0.11925 28 0.52656 0.38293 1-28 0.49884 0.30461

0.38189 0.50829 0.23503 0.11794 0.22415 29 0.32974 0.11794 1-29 0.49301 0.30151

0.08150 0.69777 0.63467 0.33019 0.98759 30 0.61811 0.33019 1-30 0.49718 0.30215

0.73842 0.21414 0.70298 0.28047 0.38562 31 0.58847 0.28047 1-31 0.50012 0.30106

0.49343 0.48794 0.12103 0.22955 0.48270 32 0.47033 0.22955 1-32 0.49919 0.29856

0.40024 0.77646 0.93069 0.33381 0.09165 33 0.57891 0.33381 1-33 0.50160 0.29888

0.65485 0.20689 0.05504 0.26259 0.54207 34 0.32034 0.26259 1-34 0.49627 0.29876

0.21213 0.43832 0.08981 0.25397 0.17227 35 0.32594 0.25397 1-35 0.49141 0.29831

0.08978 0.09167 0.98391 0.45123 0.16900 36 0.44460 0.45123 1-36 0.49011 0.30185

0.34231 0.25722 0.83032 0.24308 0.33356 37 0.40231 0.24308 1-37 0.48773 0.30021

0.38200 0.87759 0.25428 0.31748 0.57414 38 0.42641 0.31748 1-38 0.48612 0.29995

0.68819 0.23146 0.31250 0.36503 0.98215 39 0.46156 0.36503 1-39 0.48549 0.30069

0.39941 0.56251 0.35906 0.29199 0.91653 40 0.47343 0.29199 1-40 0.48519 0.29976

0.67277 0.72117 0.02202 0.30570 0.45731 41 0.40968 0.30570 1-41 0.48335 0.29937

0.31867 0.73980 0.77984 0.24623 0.68632 42 0.55770 0.24623 1-42 0.48512 0.29794

0.74215 0.33177 0.60284 0.21187 0.67708 43 0.65249 0.21187 1-43 0.48901 0.29694

0.73266 0.27707 0.62588 0.31771 0.82683 44 0.50820 0.31771 1-44 0.48945 0.29667

0.30923 0.55932 0.44947 0.23886 0.73490 45 0.43221 0.23886 1-45 0.48817 0.29519

0.41241 0.39695 0.93703 0.26606 0.75972 46 0.56718 0.26606 1-46 0.48989 0.29429

0.79158 0.44809 0.91230 0.21168 0.76405 47 0.67352 0.21168 1-47 0.49380 0.29364

0.45273 0.13961 0.07686 0.15830 0.56554 48 0.27428 0.15830 1-48 0.48923 0.29363

0.61797 0.11641 0.56057 0.25308 0.10413 49 0.31440 0.25308 1-49 0.48566 0.29345

0.60556 0.20007 0.50560 0.21419 0.76447 50 0.54525 0.21419 1-50 0.48685 0.29187

0.32880 0.91712 0.80519 0.31986 0.91743 51 0.64911 0.31986 1-51 0.49003 0.29263

0.81661 0.87645 0.97966 0.12685 0.68338 52 0.86941 0.12685 1-52 0.49733 0.29488

0.93857 0.62684 0.69329 0.20635 0.36704 53 0.64104 0.20635 1-53 0.50004 0.29383

0.95972 0.10432 0.12700 0.43994 0.22976 54 0.47309 0.43994 1-54 0.49954 0.29601

0.15747 0.81707 0.78208 0.40522 0.09448 55 0.56290 0.40522 1-55 0.50069 0.29748

0.88350 0.98995 0.55438 0.30440 0.76712 56 0.68337 0.30440 1-56 0.50395 0.29803

0.12531 0.61284 0.36690 0.30201 0.93136 57 0.48877 0.30201 1-57 0.50369 0.29757

0.20442 0.07849 0.24628 0.38926 0.94938 58 0.45411 0.38926 1-58 0.50283 0.29859

0.70112 0.29047 0.44450 0.15860 0.54380 59 0.51882 0.15860 1-59 0.50310 0.29662

0.23386 0.74448 0.24921 0.23121 0.34010 60 0.43746 0.23121 1-60 0.50201 0.29546

0.76457 0.11487 0.23516 0.37138 0.99315 61 0.49308 0.37138 1-61 0.50186 0.29611

0.41037 0.22604 0.08644 0.16838 0.39325 62 0.32551 0.16838 1-62 0.49902 0.29517

0.04988 0.34119 0.83998 0.31374 0.59481 63 0.50591 0.31374 1-63 0.49913 0.29494

0.72606 0.53118 0.46093 0.23271 0.12257 64 0.49686 0.23271 1-64 0.49909 0.29378

0.67104 0.89193 0.94370 0.40902 0.13156 65 0.54652 0.40902 1-65 0.49982 0.29508

0.34760 0.22498 0.22718 0.08052 0.14861 66 0.25390 0.08052 1-66 0.49610 0.29451

0.31612 0.07636 0.39612 0.33109 0.60668 67 0.47016 0.33109 1-67 0.49571 0.29455

0.80655 0.08970 0.95824 0.38049 0.18151 68 0.52585 0.38049 1-68 0.49615 0.2953 

0.84563 0.45806 0.55982 0.26850 0.10492 69 0.47244 0.26850 1-69 0.49581 0.29458

0.92449 0.75234 0.21109 0.39001 0.86452 70 0.56774 0.39001 1-70 0.49684 0.29555
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0.94489 0.67479 0.86294 0.11807 0.70350 71 0.81366 0.11807 1-71 0.50130 0.2961 

0.59120 0.49290 0.07089 0.21871 0.35105 72 0.41989 0.21871 1-72 0.50017 0.29509

0.24389 0.09212 0.15037 0.07712 0.28243 73 0.19999 0.07712 1-73 0.49606 0.29524

0.89242 0.23692 0.58754 0.29373 0.94522 74 0.70131 0.29373 1-74 0.49883 0.29578

0.90389 0.01511 0.82235 0.35445 0.41802 75 0.53960 0.35445 1-75 0.49937 0.29611

0.19507 0.49489 0.78013 0.30814 0.97496 76 0.57110 0.30814 1-76 0.50032 0.29596

0.23543 0.67054 0.65695 0.22364 0.43458 77 0.55940 0.22364 1-77 0.50108 0.29499

0.13676 0.67354 0.11554 0.35462 0.93058 78 0.48951 0.35462 1-78 0.50094 0.29529

0.54657 0.98176 0.73082 0.35412 0.59665 79 0.57470 0.35412 1-79 0.50187 0.29568

0.31012 0.58915 0.18652 0.30655 0.82362 80 0.55827 0.30655 1-80 0.50257 0.29549

0.82597 0.13649 0.32871 0.30578 0.78240 81 0.55572 0.30578 1-81 0.50323 0.29529

0.44282 0.08068 0.18809 0.15652 0.42348 82 0.27199 0.15652 1-82 0.50041 0.29498

0.22094 0.89973 0.96165 0.29096 0.71395 83 0.69362 0.29096 1-83 0.50274 0.29534

0.91968 0.21450 0.15780 0.35516 0.61364 84 0.55358 0.35516 1-84 0.50334 0.29567

0.75901 0.83257 0.34382 0.24427 0.28217 85 0.54742 0.24427 1-85 0.50386 0.29491

0.39102 0.16808 0.64409 0.20447 0.18986 86 0.38015 0.20447 1-86 0.50242 0.29415

0.57480 0.26665 0.94966 0.37672 0.08562 87 0.38626 0.37672 1-87 0.50109 0.29494

0.41471 0.16026 0.01428 0.17177 0.26924 88 0.25457 0.17177 1-88 0.49829 0.29488

0.21490 0.75455 0.23666 0.17177 0.42368 89 0.42223 0.17177 1-89 0.49743 0.29406

0.41277 0.64903 0.39797 0.15939 0.25185 90 0.39581 0.15939 1-90 0.49630 0.293 

0.04836 0.94539 0.89573 0.41079 0.22015 91 0.57253 0.41079 1-91 0.49714 0.29403

0.66605 0.54935 0.33738 0.22834 0.14412 92 0.47343 0.22834 1-92 0.49688 0.29321

0.89237 0.39638 0.62149 0.31357 0.38607 93 0.46853 0.31357 1-93 0.49658 0.29309

0.25721 0.67362 0.00361 0.25942 0.34228 94 0.36369 0.25942 1-94 0.49516 0.29282

0.45606 0.89931 0.18908 0.30053 0.32658 95 0.40559 0.30053 1-95 0.49422 0.29272

0.17168 0.10807 0.97879 0.39810 0.66671 96 0.55776 0.39810 1-96 0.49488 0.29353

0.75667 0.73238 0.21734 0.25986 0.70311 97 0.54279 0.25986 1-97 0.49538 0.293 

0.59063 0.23225 0.80580 0.26811 0.16181 98 0.42447 0.26811 1-98 0.49465 0.29259

0.52086 0.09782 0.66578 0.26118 0.15138 99 0.40437 0.26118 1-99 0.49374 0.29219

0.18925 0.24311 0.19964 0.30952 0.90842 100 0.41376 0.30952 1-100 0.49294 0.29215

 

 

 

 
Table 2. Random displacement u1 using the 2nd grouping 

 

        (a) Iteration=50~250 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           

(b) Iteration=300~500 

300 350 400 450 500 
2nd 

Group M300 STD300 M350 STD350 M400 STD400 M450 STD450 M500 STD500

1 -0.11035 0.02906 -0.11085 0.0289 -0.1098 0.02879 -0.11061 0.02855 -0.10979 0.02859

1~10 -0.08332 0.04477 -0.08408 0.04452 -0.08247 0.04435 -0.08371 0.04398 -0.08246 0.04404

1~20 -0.08055 0.04638 -0.08134 0.04612 -0.07967 0.04595 -0.08096 0.04556 -0.07966 0.04562

1~30 -0.0782 0.04774 -0.07901 0.04748 -0.0773 0.0473 -0.07862 0.0469 -0.07728 0.04696

1~40 -0.07754 0.04812 -0.07836 0.04786 -0.07663 0.04768 -0.07797 0.04728 -0.07662 0.04734

1~50 -0.07875 0.04742 -0.07955 0.04717 -0.07785 0.04698 -0.07916 0.04659 -0.07784 0.04665

1~60 -0.07949 0.04699 -0.08028 0.04674 -0.0786 0.04656 -0.0799 0.04617 -0.07858 0.04623

1~70 -0.07906 0.04724 -0.07986 0.04699 -0.07817 0.0468 -0.07947 0.04641 -0.07815 0.04647

1~80 -0.07953 0.04697 -0.08032 0.04672 -0.07864 0.04653 -0.07994 0.04614 -0.07862 0.0462

1~90 -0.07936 0.04707 -0.08016 0.04681 -0.07847 0.04663 -0.07978 0.04624 -0.07846 0.0463

1~100 -0.07921 0.04716 -0.08001 0.0469 -0.07832 0.04672 -0.07962 0.04633 -0.0783 0.04639

 
 

50 100 150 200 250 
2nd 

Group 
M50 STD50 M100 STD100 M150 STD150 M200 STD200 M250 STD250

1 -0.10963 0.02833 -0.11025 0.02918 -0.11084 0.02871 -0.11001 0.02869 -0.11069 0.02851

1~10 -0.0822 0.04365 -0.08316 0.04495 -0.08407 0.04422 -0.08279 0.04419 -0.08383 0.04391

1~20 -0.07939 0.04521 -0.08038 0.04656 -0.08133 0.04581 -0.08 0.04578 -0.08108 0.04549

1~30 -0.07701 0.04654 -0.07803 0.04793 -0.079 0.04715 -0.07764 0.04713 -0.07875 0.04683

1~40 -0.07634 0.04692 -0.07737 0.04832 -0.07835 0.04753 -0.07697 0.04751 -0.0781 0.04721

1~50 -0.07757 0.04623 -0.07857 0.04761 -0.07954 0.04684 -0.07819 0.04682 -0.07929 0.04652

1~60 -0.07831 0.04582 -0.07931 0.04718 -0.08027 0.04642 -0.07893 0.04639 -0.08003 0.0461

1~70 -0.07788 0.04606 -0.07889 0.04743 -0.07985 0.04666 -0.0785 0.04664 -0.0796 0.04634

1~80 -0.07836 0.04579 -0.07936 0.04716 -0.08031 0.04639 -0.07897 0.04637 -0.08007 0.04608

1~90 -0.07819 0.04589 -0.07919 0.04726 -0.08015 0.04649 -0.07881 0.04646 -0.0799 0.04617

1~100 -0.07803 0.04597 -0.07904 0.04735 -0.08 0.04658 -0.07865 0.04655 -0.07975 0.04626



A Study on Uncertainty Analyses of Monte Carlo Techniques Using Sets of Double Uniform Random Numbers 33

(a) The point distribution of total uniform random number

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Relationships between mean and standard deviation in sequential generation process of 1st and 2nd grouping using uniform 
random numbers with permission from the RAND Corporation, A Million Random Digits with 100,000 Normal Deviates, The Free Press. 

(b) The line distribution of time dependency of total uniform ran-
dom number

(c) The point distribution of the mean & standard deviation 
of 1st uniform R.N. Group 

(d) The line distribution of time dependency of the mean & standard 
deviation of 1st uniform R.N. Group 

(e) The point distribution of the mean & standard deviation of 
2nd uniform R.N group 

(f) The line distribution of time dependency of the mean & standard de-
viation of 2nd uniform R.N Group 
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Figure 5. Algorithm of Monte carlo Analysis with generation of one set of Dual 
Uniform Random Numbers for each parameter in the response by processes of 

1st and 2nd grouping. 

Start 

Calculate of Mean and standard Deviation Using Taylor 
S i

Bound of A and B 

SEEDVAL=N 

 Calculate Start point using SEED function 

J=1,M

I=1,N

RANDOM

I=1,N

U(I)=4*X(I)*[alpha*P*L/E*A] 
SUM1=SUM1+U(I)

Z(J)=SUM1/N 

TOTAL1=0. 

 TM=SUM2/M 
 TD=SUM3/M 

SUM1=0. 

SUM2=0. 
SUM3=0. 

S(J)=TOTAL1/N 
D(J)=SQRT(S(J))

TOTAL1=TOTAL1+(Y(I)-Z(J))**2 

I=1,N

I=1,N

I=1,N

OUTPUT 
RN(I), X(I), U(I) 

OUTPUT 
SUM1,Z(J), 

S(J),D(J)

OUTPUT 
TM, TD 

END 

OUTPUT 
Random Variable, Mean, Variance  

Calculate of  
RANDOM VALUE

Tree 1: 1st Grouping: 
NO.1~100 

Tree 2: 2nd Grouping: 
NO.1~100 

Tree 3: Combination of P(I), L(I) 

 INPUT: Mean and Standard Deviation of  
Structural parameters using Uniform RNs 

X(I)=A+(B-A)*(RN(I)) 

SUM2=SUM2+Z(J) 
SUM3=SUM3+D(J) 
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4. NUMERICAL EXAMPLE 
 

A symmetrical truss under a concentrated load P  at 
joint 3 is shown in Figure 6. All bars have the same axial 
rigidity EA  and length L  and the seven-element truss 
has five nodal points and 10 degree of freedom is shown in 
Figure 7. 

 

 
The global stiffness matrix and the applied force vector 

are 

     ∑
=

=
7

1i
i

i

ii k
L
AE

K       (18) 

     ( )TPF =                 (19) 
where F  defines the applied external force vector and 

concentrated load P  take a value of kN  -1000 , iE  is  

 
Young’s modulus of the i th member, iA  is the cross-

sectional area of the i th member, iL  is the length of the 
i th member. The local element matrices is ik . Young’s 
modulus for each member is assigned a value of 

25 N/m102.0× , the cross-sectional area of members 1-6 
are assigned values of 22 m109.0 −× , and the length 

L (see figure) take a value of m10 . 
Each structural parameter, P , E , A , and L  are as-

signed by uniform random number sets, and the 1st and 2nd 

groups of uniform random numbers as shown in Table 1 
are composed of the scenario of 100 cases of uncertainty 
characteristics for the structural response respectively. 
Also in the tree graph of combinations of structural pa-
rameters 24 cases of structural responses occurs. 

Table 2 illustrates the means and standard deviations of 
random displacements u1 according to 2nd grouping of Ta-
ble 1 and it is shown in Figure 8 and 9. 

Figure 8 and 9 illustrate that the results of uncertainty of 
structural responses are changed through each scenario. 
Here, M and STD denote mean and standard deviation 
respectively. The number 200 is total useful number of 
random number in M200. As the number of the uniform 
random number is increased, the uncertainty of structural 
responses makes toward the stabile location of the struc-
tural behavior. The range of the random displacement is 
changed by the upper bound (i.e. the 4th case with the 
number of an iteration=50) and the lower bound (i.e. the 1st 
case with the number of an iteration=350). The errors of 
the upper and lower bound compared with the numerical 
exact solution (i.e. –0.160375) are 52.399 % and 47.572 %, 
respectively. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Convergence of Standard Deviation of random displacement u1 
for generation values of one set of n Dual Uniform Random Number for 

each parameter in the response by processes of 2nd grouping

Figure 9. Convergence of Mean of random displacement u1 for generation 
values of one set of n Dual Uniform Random Number for each parameter 

in the response by processes of 2nd grouping 

Figure 6. Truss structure 
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Figure 7. Nodal displacements (DOF=10) 
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Figure 10 shows the degree of the uncertainty with re-
spect to each scenario and number of the iteration. Here 
uncert denotes uncertainty and the number 100 in un-
cert100 is numbers of useful RN. It is investigated that the 
4th case with the number of an iteration=100 and 1st case 
with the number of an iteration=250 have the maximum 
value (i.e. the upper bound value) 62.453 % and the mini-
mum value (i.e. the lower bound value) 52.379 % of sce-
narios of random displacements, respectively. 

 
 
 
 
 

 
 
 
5. CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
5. CONCLUSIONS 
 

Monte Carlo methods provide a systematic way of deal-
ing with complex problems for which we have incomplete 
knowledge of the relationship between data and model 
parameters. This is the case, e.g., for many highly compli-
cated problems of the structural responses, where the for-
ward relation is insusceptible to mathematical analysis, 
and is only given by complex algorithm. Monte Carlo 
methods can be devoted to sampling from a probability 
density. Although the Monte Carlo algorithm of this tech-
nique is simple and well mapped-out, many theoretical and 
practical problems concerning their speed of processes 
remain to be solved, and this random solution appears 
great error in comparison with the numerical exact solution. 
Therefore many random numbers and sequential processes 
need in order to be close to exact solution. This results in 
computational burdens. 

However in this paper the sampling DURN technique by 
1st and 2nd grouping of the random number can make selec-
tive grouping cases without additional iteration of the 
simulation and the groupings are utilized in cases where a 
resolution and uncertainty analysis is called for. Compari-
sons of structural behaviors are investigated by each 
grouping and it saves computational time in order to obtain 
approximate and appropriate solutions. 

This study addresses the modified Monte Carlo algo-
rithms through dual uniform random numbers currently in 
use in applications. Several variants of these algorithms 

exist many of which are adaptations of the basic methods, 
or exploit special properties of the problem considered. 
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Figure 10. Convergence of uncertainty degree (error) in Mean and 
Standard Deviation for generation values of one set of n Dual Uni-
form Random Number for each parameter in the response by proc-

esses of 2nd grouping 
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