• Title/Summary/Keyword: Monte Carlo dose calculation

Search Result 124, Processing Time 0.028 seconds

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing (천장 개방형 RT 사용시설의 방사선 안전성 평가 연구)

  • Sung-Hoe, Heo;Won-Seok, Park;Seung-Uk, Heo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.741-749
    • /
    • 2022
  • Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.

Modification of Trunk Thickness of MIRD phantom Based on the Comparison of Organ Doses with Voxel Phantom (체적소팬텀과의 장기선량 비교를 통한 MIRD팬텀 몸통두께 수정)

  • Lee, Choon-Sik;Park, Sang-Hyun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.199-206
    • /
    • 2003
  • Because the MIRD phantom, the representative mathematical phantom was developed for the calculation of internal radiation dose, and simulated by the simplified mathematical equations for rapid computation, the appropriateness of application to external dose calculation and the closeness to real human body should be justified. This study was intended to modify the MIRD phantom according to the comparison of the organ absorbed doses in the two phantoms exposed to monoenergetic broad parallel photon beams of the energy between 0.05 MeV and 10 MeV. The organ absorbed doses of the MIRD phantom and the Zubal yokel phantom were calculated for AP and PA geometries by MCNP4C, general-purpose Monte Carlo code. The MIRD phantom received higher doses than the Zubal phantom for both AP and PA geometries. Effective dose in PA geometry for 0.05 MeV photon beams showed the difference up to 50%. Anatomical axial views of the two phantoms revealed the thinner trunk thickness of the MIRD phantom than that of the Zubal phantom. To find out the optimal thickness of trunk, the difference of effective doses for 0.5 MeV photon beams for various trunk thickness of the MIRD phantom from 20 cm to 36 cm were compared. The optimal thunk thickness, 24 cm and 28 cm for AP and PA geometries, respectively, showed the minimum difference of effective doses between the two phantoms. The trunk model of the MIRD phantom was modified and the organ doses were recalculated using the modified MIRD phantom. The differences of effective dose for AP and PA geometries reduced to 7.3% and the overestimation of organ doses decreased, too. Because MIRD-type phantoms are easier to be adopted in Monte Carlo calculations and to standardize, the modifications of the MIRD phantom allow us to hold the advantage of MIRD-type phantoms over a voxel phantom and alleviate the anatomical difference and consequent disagreement in dose calculation.

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria (몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Kyo-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 1994
  • The MCNP 4.2 code was used to calculate the thermal neutron flux distributions for $(n,\;{\gamma})$reaction in mainshell, annular plate, and subshell of the calandria of a CANDU 6 plant during operation. The thermal neutron flux distributions in calandria mainshell, annular plate, and subshell were in the range of $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$ which is somewhat higher than the previous estimates calculated by DOT 4.2 code. As an application to shielding analysis, photon dose rates outside the side and bottom shields were calculated. The resulting dose rates at the reactor accessible areas were below design target, $6 {\mu}Sv/h$. The methodology used in this study to evaluate the thermal neutron flux distribution for $(n,\;{\gamma})reaction$ can be applied to radiation shielding analysis of CANDU 6 type plants.

  • PDF

A Theoretical Calculation of Photon Dose Equivalent Conversion Factor For Extremity Dosimeter (말단선량계의 광자선량당량환산인자에 대한 이론적 계산)

  • Kim, Kwang-Pyo;Lee, Won-Keun;Kim, Jong-Su;Yoon, Yeo-Chang;Yoon, Suk-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.41-50
    • /
    • 1996
  • In this study, the theoretical calculation of the air kerma-to-dose equivalent conversion factors was performed with a Monte Carlo N-Particle transport code for the two types of extremity phantom of the ANSI and the KAERI, respectively. Considering the distribution of absorbed dose due to the interaction of homogeneous Parallel broad beam of monoenergetic primary photons in the range between 15keV and 1.5MeV, the air kerma-to-dose equivalent conversion factors based on the kerma approximation were calculated. It is showed that all the theoretical conversion factors of the two types of the extremity phantom for the ANSI and the KAERI agree well with the experimental values of the ANSI N13.32 draft(1995) for each energy within 5.7%, maximum difference ratio, except for 13.6%, difference ratio in the case for the energy of less than 40keV. It is due to uncertainties of experiment occurred in the low X-ray energy range and geometry considered in the MCNP code.

  • PDF

Safety Simulation of Therapeutic I-131 Capsule Using GEANT4 (GEANT4를 이용한 치료용 I-131 캡슐의 안정성 시뮬레이션)

  • Jeong, Yeong-Hwan;Kim, Byung-Cheol;Sim, Cheol-Min;Seo, Han-Kyung;Gwon, Yong-Ju;Han, Dong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Purpose Iodine (I-131) is one of the most widely used radioactive isotopes for therapeutic in the field of nuclear medicine. Therapeutic I-131 capsule is made out of lead to shield high energy radiation. Accurate dosimetry is necessarily required to perform safe and effective work for relative workers. The Monte Carlo method is known as a method to predict the absorbed dose distribution most accurately in radiation therapy and many researchers constantly attempt to apply this method to the dose calculation of radiotherapy recently. This paper aims to calculate distance dependent and activity dependent therapeutic I-131 capsule using GEANT4. Materials and Methods Therapeutic capsules was implemented on the basis of the design drawings. The simulated dose was determined by generating of gamma rays of energy to more than 364 keV. The simulated dose from the capsule at the distance of 10 cm and 100 cm was measured and calculated in the model of water phantom. The simulated dose were separately calculated for each position of each detector. Results According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of therapeutic I-131 capsule should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated doses turned out to be less than the limit, satisfying the domestic regulation. Conclusion These simulation results may serve as useful data in the prediction of hands dose absorbed by I-131 capsule handling. GEANT4 is considered that it will be effectively used in order to check the radiation dose.

  • PDF

The Availability of the step optimization in Monaco Planning system (모나코 치료계획 시스템에서 단계적 최적화 조건 실현의 유용성)

  • Kim, Dae Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • Purpose : We present a method to reduce this gap and complete the treatment plan, to be made by the re-optimization is performed in the same conditions as the initial treatment plan different from Monaco treatment planning system. Materials and Methods : The optimization is carried in two steps when performing the inverse calculation for volumetric modulated radiation therapy or intensity modulated radiation therapy in Monaco treatment planning system. This study was the first plan with a complete optimization in two steps by performing all of the treatment plan, without changing the optimized condition from Step 1 to Step 2, a typical sequential optimization performed. At this time, the experiment was carried out with a pencil beam and Monte Carlo algorithm is applied In step 2. We compared initial plan and re-optimized plan with the same optimized conditions. And then evaluated the planning dose by measurement. When performing a re-optimization for the initial treatment plan, the second plan applied the step optimization. Results : When the common optimization again carried out in the same conditions in the initial treatment plan was completed, the result is not the same. From a comparison of the treatment planning system, similar to the dose-volume the histogram showed a similar trend, but exhibit different values that do not satisfy the conditions best optimized dose, dose homogeneity and dose limits. Also showed more than 20% different in comparison dosimetry. If different dose algorithms, this measure is not the same out. Conclusion : The process of performing a number of trial and error, and you get to the ultimate goal of treatment planning optimization process. If carried out to optimize the completion of the initial trust only the treatment plan, we could be made of another treatment plan. The similar treatment plan could not satisfy to optimization results. When you perform re-optimization process, you will need to apply the step optimized conditions, making sure the dose distribution through the optimization process.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.