• Title/Summary/Keyword: Monte Carlo 시뮬레이션

Search Result 780, Processing Time 0.028 seconds

Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation (몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측)

  • Ahn, Jeong-Ju;Kwon, Jae-Do;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.

A Ship-Valuation Model Based on Monte Carlo Simulation (몬테카를로 시뮬레이션방법을 이용한 선박가치 평가)

  • Choi, Jung-Suk;Lee, Ki-Hwan;Nam, Jong-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.3
    • /
    • pp.1-14
    • /
    • 2015
  • This study utilizes Monte Carlo simulation to forecast the time charter rate of vessels, the three-month Libor interest rate, and the ship demolition price, to mitigate future uncertainties involving these factors. The simulation was performed 10,000 times to obtain an exact result. For the empirical analysis - based on considerations in ordering ships in 2010-a comparison between the Monte Carlo simulation-based stochastic discounted cash flow (DCF) method and traditional DCF methods was made. The analysis revealed that the net present value obtained through Monte Carlo simulation was lower than that obtained via regular DCF methods, alerting the owners to risks and preventing them from placing injudicious orders for ships. This research has implications in reducing the uncertainties that future shipping markets face, through the use of a stochastic DCF approach with relevant variables and probability methods.

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석)

  • Park, Chul-Woo;Lee, Onsoo;Shin, Hyo-Sub;Park, Jin-Yong;Lee, Dong-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

Stochastic Analysis for Vehicle Dynamics using the Monte-Carlo Simulation (Monte-Carlo 시뮬레이션을 이용한 확률적 차량동역학 해석)

  • Tak, Tae-Oh;Joo, Jae-hoon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.3-12
    • /
    • 2002
  • Monte-Carlo simulation technique has advantages over deterministic simulation in various engineering analysis since Monte-Carlo simulation can take into consideration of scattering of various design variables, which is inherent characteristics of physical world. In this work, Monte-Carlo simulation of steady-state cornering behavior of a truck with design variables like hard points and busing stiffness. The purpose of the simulation is to improve understeer gradient of the truck, which exhibits a small amount of instability when the lateral acceleration is about 0.4g. Through correlation analysis, design variables that have high impacts on the cornering behavior were selected, and significant performance improvement has been achieved by appropriately changing the high impact design variables.

  • PDF

Measuring the Light Dosimetry Within Biological Tissue Using Monte Carlo Simulation (Monte Csrlo 시뮬레이션을 이용한 생체조직내의 광선량 측정)

  • 임현수;구철희
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the correct measuring of the light dosimetry in biological tissues give the important affection to the effect of PDT treatment we used Monte Carlo simulation to measure the light dosimetry on this study. The parameters using in experiments are the optical properties of the real biological tissue, and we used Henyey-Greenstein phase function among the phase functions. As we results, we displayed the result the change of Fluence rate and the difference against the previous theory was at least 0.35%. Biological tissues using in experiment were Human tissue, pig tissue, rat liver tissue and rabbit muscle tissue. The most of biological tissue have big scattering coefficient in visible wavelength which influences penetration depth. The penetration depth of human tissue in visible region is 1.5~2cm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well.

  • PDF

Power Wheeling Effects Evaluation using Monte-Carlo Simulation (몬테카를로 시뮬레이션에 의한 전력탁송 영향평가)

  • Lee, Buhm
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.552-557
    • /
    • 2003
  • This paper presents an algorithm for evaluating power wheeling effects considering contingency using Monte-Carlo simulation. The effects of power wheeling on generating cost, transmission losses, and system security are considered. And, for a specific operating condition, the effects are quantified by the sensitivity of specific quantities of interest with respect to wheeling level. This model is utilized to calculate probability distribution functions of the incremental effects of power wheeling with a Monte-Carlo simulation. The proposed method is applied to IEEE RTS-96 system and the results are presented.

A Study on Real Option Valuation for Technology Investment Using the Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 기술투자 실물옵션평가에 대한 연구)

  • Sung Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.3
    • /
    • pp.533-554
    • /
    • 2004
  • Real option valuation considers the managerial flexibility to make ongoing decisions regarding implementation of investment projects and deployment of real assets. The appeal of the framework is natural given the high degree of uncertainty that firms face in their technology investment decisions. This paper suggests an algorithm for estimating volatility of logarithmic cash flow returns of real asset based on Monte Carlo simulation. This research uses a binomial model to obtain point estimate of real option value with embedded expansion option case and provides also an array of numerical results to show the interval estimation of option value using Monte Carlo simulation.

  • PDF

The Effect Analysis of Missile Warning Radar Using Probability Model (확률 모델을 이용한 미사일 경고 레이다의 효과도 분석)

  • Park, Gyu-Churl;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.544-550
    • /
    • 2009
  • To analyze the threat decision performance of MWR(Missile Warning Radar) give analysis on condition that we decide the effective threat using the POC(Probability of Over Countermeasure)/PUC(Probability of Under Countermeasure). Thus, we execute the simulation using the Monte-Carlo method to analyze effect, but the execution time of simulation took longer than we expected. In this paper, the effect analysis is proposed using the probability model to reduce the execution time of simulation. We present the setting method of parameter for probability model and the effect analysis result of MWR using the simulation. Also, we present the comparison result of simulation execution time for Monte-Carlo and probability model.

Monte-Carlo Simulations of Nonlinear Systems to Non-White Excitation (비백색 잡음을 입력으로 하는 비선형 시스템의 시뮬레이션)

  • D.W. Kim;S.H. Kwon;D.D. Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.57-64
    • /
    • 1994
  • The subject of this paper is the simulation of a nonlinear stochastic differential equation. The Monte-Carlo solution of stochastic problems is applied to solve it. The method has been applied to problems involving nonlinear rolling motion of ships in irregular waves. These results are compared with those obtained by the stochastic linearization method and the equivalent nonlinear equation method to demonstrate its usefulness.

  • PDF