• Title/Summary/Keyword: Monte Carlo 계산

Search Result 514, Processing Time 0.04 seconds

Monte Carlo Simulation for Dose Distributions from Ir-192 in Brachytherapy (근접 방사선치료용 이리듐 선원의 선량분포에 대한 몬데칼로 시뮬레이션)

  • 김승곤;강정구;이정옥;정동혁;문성록
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.187-194
    • /
    • 2002
  • In this work we investigated through Monte Carlo calculations the physical characteristics of the absorbed dose from the Ir-192 source used in brachytherapy The Monte Carlo calculations were performed using the code EGS4, which was extensively modified in order to handle cylindrical sources, phantoms, and energy distributions to suit out own purpose. From the results of the calculations for the $\beta$ -rays, it was found that they contribute on the average 0.02% to The total absorbed dose in the distance range of 0.5-5.0 cm from the source. This is due to the face that, although most of the primary $\beta$ -rays are absorbed in the source and encapsulation material, the resulting low energy braking radiation from them contribute to such a distance. The absorbed dose in the encapsulation material varied on the average from 2.8% for platinum down to 1.1% for iron. The radial dose functions obtained by our Monte Carlo calculations were consistent within $\pm$3% with those of the TG-43 report for the radial distance interval 0.5-10.0 cm from the source. The user code we wrote in this work can be used for other sources of different sizes and so it can be very useful in designing and producing the sources for brachytherapy.

  • PDF

Application of Discrete-Ordinate Method to the Time Dependent Radiative Heat Transfer Calculations (방향차분법을 적용한 시간종속 복사 열전달 계산)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.250-255
    • /
    • 2006
  • In this study, the discrete ordinates method which has been widely used in the solution of neutron transport equation is applied to the solution of the time dependent radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new multi-step linearization method is developed to avoid the nonlinearity in the material temperature equation. This new solution method is applied to the well known Marshak wave problem, and the numerical result is compared with that of the conventional Monte-Carlo method.

Development of High Performance Massively Parallel Processing Simulator for Semiconductor Etching Process (건식 식각 공정을 위한 초고속 병렬 연산 시뮬레이터 개발)

  • Lee, Jae-Hee;Kwon, Oh-Seob;Ban, Yong-Chan;Won, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.37-44
    • /
    • 1999
  • This paper report the implementation results of Monte Carlo numerical calculation for ion distributions in plasma dry etching chamber and of the surface evolution simulator using cell removal method for topographical evolution of the surface exposed to etching ion. The energy and angular distributions of ion across the plasma sheath were calculated by MC(Monte Carlo) algorithm. High performance MPP(Massively Parallel Processing) algorithm developed in this paper enables efficient parallel and distributed simulation with an efficiency of more than 95% and speedup of 16 with 16 processors. Parallelization of surface evolution simulator based on cell removal method reduces simulation time dramatically to 15 minutes and increases capability of simulation required enormous memory size of 600Mb.

  • PDF

Monte-Carlo Calculation of Single-Electron Inverter Transient Characteristics (몬테-칼로 방법을 이용한 단일전자인버터 회로의 과도특성 계산)

  • 정용익;유윤섭;황성우
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.326-329
    • /
    • 2000
  • In this paper, a complete methodology of incorporating the displacement current for the calculation of a single electron inverter characteristics has been devised. It has been implemented for the calculation of the low frequency noise spectrum in a single electron inverter in the framework of Monte-Carlo method. Our new methodology opens up a systematic way of analyzing transient behaviors of single electron circuits.

  • PDF

A Comparative Study of Different Reliability Calculation Algorithms (신뢰도 계산의 여러 가지 알고리즘의 비교 연구)

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1027-1028
    • /
    • 2011
  • In this paper, three reliability calculation algorithms: Monte Carlo Simulation (MCS), Reliability Index Approach (RIA), and Sensitivity-based Monte Carlo Simulation (SMCS) are studied. Their efficiency and accuracy are validated by analytic test functions.

  • PDF

A STUDY ON COMPUTING ILLUMINANCE DISTRIBUTION OF THEINTERIOR WHICH HAS DAYLIGHT APERTURE BY MONTE CARLO SIMULATION (몬테카를로 시뮬레이션을 이용한 채광창을 가지는 실내면의 조도계산에 관한 연구)

  • 송민호;김석환;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.23-27
    • /
    • 1991
  • The Monte Carlo Simulation has been used widely in physics for computing flux transfer, pricipally in applications where direct solution of analytical equations is very difficult. But it seldom has been applied in determining interior lighting. This article summarizes the Method, and deals with numerical results of illuminance distribution. This Method considers daylight as well as artificial light sources.

  • PDF

Extraction of Hydrodynamic Model Parameters for GaAs Using the Monte Carlo Method (Monte Carlo Method에 의한 GaAs의 Hydrodynamic Model Parameter의 추출)

  • Park, Seong-Ho;Han, Baik-Hyung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.63-71
    • /
    • 1990
  • The hydrodynamic model parameters for the submicron GaAs simulation are calculated using the Monte Carlo method. $\Gamma$, L-, and X-valleys are included in the conduction band of GaAs, and polar optic phonon, acoustic phonon, equivalent intervalley, non-equivalent intervalley, ionized impurity, and piezoelectric scattering are taken into account. The velocity-electric field strength curve obtained in this paper is in good agreement with experimental one. We present the results in tabular form so that other participants can make use of them to simulate the submicron GaAs devices by the hydrodynamic model.

  • PDF

The Simulation on Dose Distributions of the 6 MeV Electron Beam in Water Phantom (6 MeV 전자선의 물팬텀 속의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Moon, Sun-Rock
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • This study was performed for the clinical applications applying the Monte Carlo methods. In this study we calculated the absorbed dose distributions for the 6 MeV electron beam in water phantom and compared the results with measured values. The energy data of electron beam used in Monte Carlo calculation is the energy distribution for 6 MeV electron beam which is assumed as a Gaussian form. We calculated percent depth doses and beam profiles for three field sizes of $10{\times}10,\;15{\times}15$, and $20{\times}20\;cm^2$ in water phantom using Monte Carlo methods and measured those data using a semiconductor detector and other devices. We found that the calculated percent depth doses and beam profiles agree with the measured values approximately. However, the calculated beam profiles at the edge of the fields were estimated to be lower than the measured values. The reason for that result is that we did not consider the angular distributions of the electrons in phantom surface and contamination of X-rays in our calculations. In conclusion, in order to apply the Monte Carlo methods to the clinical calculations we are to study the source models for electron beam of the linear accelerator beforehand.

  • PDF

Monte-Carlo Simulation for Parameter Estimation of Bivariate Probability Distribution for Hydrological Data (수문자료의 이변량 확률분포형 매개변수 추정 개선을 위한 Monte-Carlo 모의실험)

  • Joo, Kyungwon;Kim, Sunghun;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.335-335
    • /
    • 2019
  • 최근 수문자료에 대한 다변량 빈도해석 연구가 활발히 이루어지고 있다. 하나의 자료를 확률변수로 사용하는 단변량 빈도해석에 비해 여러 수문자료를 조합하여 동시에 추정할 수 있는 다변량 빈도해석은 수문자료의 상관성을 고려하면서 확률분포형을 추정할 수 있다는 장점이 있다. 이에 다변량 확률분포형을 이용한 빈도해석 과정 중 정확한 매개변수 추정을 위한 연구도 최근 여러방면으로 이루어지고 있다. 본 연구에서는 다변량 확률분포형의 매개변수 추정방법 중 기존에 주로 사용되고 있는 의사최우도법(MPL, Maximum Pseudo-Likelihood method)의 성능을 개선하기 위해 기존의 방법과 본 연구에서 제안하는 매개변수 추정방법의 Monte-Carlo 모의실험을 수행하였다. 일반적으로 수문자료는 양(+)의 왜곡도계수를 갖기 때문에 GEV(Geveralized Extreme Value) 분포형을 모분포로 하여 각 방법의 정확성을 검토하였다. 모의실험을 수행한 결과, 기존의사최우도법에서 Weibull 식을 이용하여 순위통계량을 계산하는 방법보다 본 연구에서 제안한 왜곡도를 고려하는 순위통계량을 사용하는 것이 더 정확한 매개변수 추정결과를 보여주는 것으로 나타났다.

  • PDF

Development of a Method for Uncertainty Analysis in the Top Event Unavailability (고장수목 정점사상 이용 불능도의 불확실성 분석용 방법 개발)

  • Sang Hoon Han;Chang Hyun Chung;Kun Joong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • A method and computer code for the uncertainty analysis in the top event unavailability are developed and tested by combining Monte Carlo Method and Moments method with fault tree reduction technique. Using system fault trees and unavailability data selected in WASH-1400, the efficiency of the proposed method is tested and these results are compared with those obtained by Monte Carlo method. It is shown that the results are sufficiently good in accuracy and computation time is considerably reduced compared with those by Monte Carlo method.

  • PDF