• Title/Summary/Keyword: Monolithic

Search Result 981, Processing Time 0.022 seconds

Separation of Caffeine and Tryptophan Using Molded Macroporous Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Rods (주조된 매크로 다공성 Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) 막대를 이용한 카페인과 트립토판의 분리)

  • Jin, Longmei;Yan, Hongyuan;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.603-608
    • /
    • 2005
  • The molded macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) rods produced by a facile molding process were polymerized in situ within a tubular mold, chromatographic column ($4.6{\times}100mm$) by free radical polymerization. It was complemented by epoxy derivatized monolithic column and chemical modification of the epoxide groups with the sulphuric acid. By variation of the polymerization conditions, such as the ratio of the monomers, the porogen (pore generating material), and the temperature, the pore size could be varied, so the retention time of the samples may be adjusted. For the mixture of caffeine and tryptophan in the prepared monolithic column, the influences of polymerization material compositions to the efficiency, selectivity, and resolution of the monolithic column were investigated.

Experimental Study on the Static Behavior of the Spliced PSC Box Girder (분절 PSC 박스거더의 정적거동에 관한 실험적 연구)

  • Chung, Won-Seok;Kim, Jae-Hueng;Chung, Dae-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2007
  • The main objective of the paper is to investigate the static behavior of a prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced PSC girder is fabricated and tested to compare its static performance against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. This includes infernal strain, deflections, neutral axis position, and crack patterns for both girders. The test also consists of monitoring relative displacements occurring across the joints. Both the horizontal displacement (gap) and vertical displacement (sliding) are measured throughout the loading procedure. All results have been compared to those obtained from the monolithic girder. It has been demonstrated that the spliced girder offers close behavior with respect to the monolithic girder up to the crack load. Both girders exhibits ductile flexural failure rather than abrupt shear failure at joints.

Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions

  • Choi, Sulki;Yoon, Hyung-In;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.423-431
    • /
    • 2017
  • PURPOSE. The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS. Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS. The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION. The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness.

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.

High Speed Separation of PFCs in Human Serum by C18-Monolithic Column Liquid Chromatography-Tandem Mass Spectrometry

  • Lee, Won-Woong;Lee, Sun-Young;Yu, Se Mi;Hong, Jongki
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3727-3734
    • /
    • 2012
  • An analytical method has been developed for the rapid determination of perfluorinated compounds (PFCs) in human serum samples. The extraction and purification of PFCs from human serum were performed by the modified method of previous report. Ten PFCs were rapidly separated within 3.3 min by C18-monolithic column liquid chromatography (LC) and detected by electrospray ionization (ESI) tandem mass spectrometry (MS/MS) in negative ion mode. The runtime of PFCs on monolithic column LC was up to 4-fold faster than that on conventional column LC. The effect of triethylamine (TEA) to the mobile phase has investigated on the overall MS detection sensitivity of PFCs in ESI ionization. Quantification was performed by LC-MS/MS in multiple-ion reaction monitoring (MRM) mode, using $^{13}C$-labeled internal standards. Method validation was performed to determine recovery, linearity, precision, and limits of quantification, followed by, the analysis of a standard reference material (SRM 1957 from NIST). The overall recoveries ranged between 81.5 and 106.3% with RSDs of 3.4 to 16.2% for the entire procedure. The calibration range extended from 0.33 to 50 $ng\;mL^{-1}$, with a correlation coefficient ($R^2$) greater than 0.995 and the limits of quantification with 0.08 to 0.46 $ng\;mL^{-1}$. This approach can be used for rapid and sensitive quantitative analysis of 10 PFCs in human serum with high performance and accuracy.

Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics (LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향)

  • Park, Yi-Hyun;Jung, Hun-Chae;Kim, Dong-Hyun;Yoon, Han-Ki;Kohyam, Akira
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics

  • Kim, Hee-Kyung;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2016
  • PURPOSE. This study investigated the effect of amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. MATERIALS AND METHODS. One-hundred sixty-five monolithic zirconia specimens ($16.3mm{\times}16.3mm{\times}2.0mm$) were divided into 5 groups (Group I to V) according to the number of A2-coloring liquid applications. Each group was then divided into 11 subgroups by reducing the thickness up to 1.0 mm in 0.1-mm increments (Subgroup 0 to 10, n=3). Colors and spectral distributions were measured according to CIELAB on a reflection spectrophotometer. All measurements were performed on five different areas of each specimen. Color difference (${\Delta}E^*{^_{ab}}$) and translucency parameter (TP) were calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}=.05$). RESULTS. There were significant differences in CIE $L^*$ between Subgroup 0 and other subgroups in all groups. CIE $a^*$ increased (0.52<$R^2$<0.73), while CIE $b^*$ decreased (0.00<$R^2$<0.74) in all groups with increasing thickness reduction. Perceptible color differences (${\Delta}E^*{^_{ab}}$>3.7) were obtained between Subgroup 0 and other subgroups. TP values generally increased as the thickness reduction increased in all groups ($R^2$>0.89, P<.001). CONCLUSION. Increasing thickness reduction reduces lightness and increases a reddish, bluish appearance, and translucency of monolithic zirconia ceramics.

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Microstructural characteristics of a fresh U(Mo) monolithic mini-plate: Focus on the Zr coating deposited by PVD

  • Iltis, Xaviere;Drouan, Doris;Blay, Thierry;Zacharie, Isabelle;Sabathier, Catherine;Onofri, Claire;Steyer, Christian;Schwarz, Christian;Baumeister, Bruno;Allenou, Jerome;Stepnik, Bertrand;Petry, Winfried
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2629-2639
    • /
    • 2021
  • Within the frame of the EMPIrE test, four monolithic mini-plates were irradiated in the ATR reactor. In two of them, the monolithic U(Mo) foil had been PVD-coated with Zr before the plate manufacturing. Extensive microstructural characterizations were performed on a fresh archive mini-plate, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB)/Transmission Electron Microscopy (TEM) with nano EDS. A particular attention was paid to the examination of the U(Mo) foil, the PVD coating, the cladding/Zr and Zr/U(Mo) interfaces. The Zr coating has a thickness around 15 ㎛. It has a columnar microstructure and appears dense. The cohesion of the cladding/Zr and Zr/U(Mo) interfaces seems to be satisfactory. An almost continuous layer with a thickness of the order of 100-300 nm is present at the cladding/Zr interface and corresponds to an oxidized part of the Zr coating. At the Zr/U(Mo) interface, a thin discontinuous layer is observed. It could correspond to locally oxidized U(Mo). This work provides a basis for interpreting the results of characterizations on EMPIrE irradiated plates.

Microservice construction method based on UML design assets of monolithic applications (모놀리식 애플리케이션의 UML 설계 자료에 기반한 마이크로서비스 구성 방법)

  • Kim, Daeho;Park, Joonseok;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.7-18
    • /
    • 2018
  • Recently, serverless computing is spotlighted. Because it supports the development of application based on micro-service. Micro-service means a small-scale service that can operate independently. Applications with micro-service units have the advantage of enabling individual updates, easy and fast deployment. In addition, it has the advantage of supporting various languages and platforms for each service. Therefore many enterprise are trying to change from monolithic architecture to micro-service based architecture. However, there is a lack of research on methods and baseline for micro-service construction. In this paper, a method is proposed to construct the micro-service unit by analyzing UML design in monolithic application. It also shows the proposed approach can reconstruct monolithic application into micro-service based unit by implementing the constructed micro-services in a real serverless platform environment. In addition, the results of the comparative evaluation with the related studies are presented.