DOI QR코드

DOI QR Code

High Speed Separation of PFCs in Human Serum by C18-Monolithic Column Liquid Chromatography-Tandem Mass Spectrometry

  • Received : 2012.07.29
  • Accepted : 2012.08.17
  • Published : 2012.11.20

Abstract

An analytical method has been developed for the rapid determination of perfluorinated compounds (PFCs) in human serum samples. The extraction and purification of PFCs from human serum were performed by the modified method of previous report. Ten PFCs were rapidly separated within 3.3 min by C18-monolithic column liquid chromatography (LC) and detected by electrospray ionization (ESI) tandem mass spectrometry (MS/MS) in negative ion mode. The runtime of PFCs on monolithic column LC was up to 4-fold faster than that on conventional column LC. The effect of triethylamine (TEA) to the mobile phase has investigated on the overall MS detection sensitivity of PFCs in ESI ionization. Quantification was performed by LC-MS/MS in multiple-ion reaction monitoring (MRM) mode, using $^{13}C$-labeled internal standards. Method validation was performed to determine recovery, linearity, precision, and limits of quantification, followed by, the analysis of a standard reference material (SRM 1957 from NIST). The overall recoveries ranged between 81.5 and 106.3% with RSDs of 3.4 to 16.2% for the entire procedure. The calibration range extended from 0.33 to 50 $ng\;mL^{-1}$, with a correlation coefficient ($R^2$) greater than 0.995 and the limits of quantification with 0.08 to 0.46 $ng\;mL^{-1}$. This approach can be used for rapid and sensitive quantitative analysis of 10 PFCs in human serum with high performance and accuracy.

Keywords

References

  1. Kissa, E., Fluiorinated Surfactants and Repellents (Sulfactant science); Dekker, M., Ed.; CRC Press: New York, 2001.
  2. Kovarova, J.; Svobodova, Z. Neuroendocrinol. Lett. 2008, 29, 599.
  3. Harada, K. H.; Koizumi, A. Environ. Health Prev. Med. 2009, 14, 7. https://doi.org/10.1007/s12199-008-0058-5
  4. Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Toxicol. Sci. 2007, 99, 366. https://doi.org/10.1093/toxsci/kfm128
  5. Olsen, G. W.; Burris, J. M.; Mandel, J. H.; Zobel, L. R. J. Occup. Environ. Med. 1999, 41, 799. https://doi.org/10.1097/00043764-199909000-00012
  6. Zhang, T.; Wu, Q.; Sun, H. W.; Zhang, X. Z.; Yun, S. H.; Kannan, K. Environ. Sci. Technol. 2010, 44, 4341. https://doi.org/10.1021/es1002132
  7. Vassiliadou, I.; Costopoulou, D.; Ferderigou, A.; Leondiadis, L. Chemosphere 2010, 80, 1199. https://doi.org/10.1016/j.chemosphere.2010.06.014
  8. Toms, L. M. L.; Calafat, A. M.; Kato, K.; Thompson, J.; Sjödin, A.; Mueller, J. F. Environ. Sci. Technol. 2009, 43, 4194. https://doi.org/10.1021/es900272u
  9. Ingelido, A. M.; Marra, V.; Abballe, A.; Valentini, S.; Iacovella, N.; Barbieri, P.; Porpora, M. G.; Domenico, A.; Felip, E. D.Chemosphere 2010, 80, 1125. https://doi.org/10.1016/j.chemosphere.2010.06.025
  10. Kato, K.; Basden, B. J.; Needham, L. L.; Calafat, A. M. J. Chromatogr. A 2011, 1218, 2133. https://doi.org/10.1016/j.chroma.2010.10.051
  11. Wójcik, L.; Szostek, B.; Maruszak, W.; Trojanowicz, M. Electrophoresis 2005, 26, 1080. https://doi.org/10.1002/elps.200406184
  12. Ohya, T.; Kudo, N.; Suzuki, E.; Kawashima, Y. J. Chromatogr. B 1998, 720, 1. https://doi.org/10.1016/S0378-4347(98)00448-4
  13. Moody, C. A.; Kwan, W. C.; Martin, J. W.; Muir, D. C. G.; Mabury, S. A. Anal. Chem. 2001, 73, 2200. https://doi.org/10.1021/ac0100648
  14. Belisle, J.; Hagen, D. F. Anal. Biochem. 1980, 101, 369. https://doi.org/10.1016/0003-2697(80)90202-X
  15. Luque, N.; Ballesteros-Gomez, A.; Leeuwen, S.; Rubio, S. J. Chromatogr. A 2010, 1217, 3774. https://doi.org/10.1016/j.chroma.2010.04.014
  16. Gosetti, F.; Chiuminatto, U.; Zampieri, D.; Robotti, E.; Mazzucco E.; Calabrese, G.; Gennaro, M. C.; Marengo, E. J. Chromatogr. A 2010, 1217, 7864. https://doi.org/10.1016/j.chroma.2010.10.049
  17. Guo, F.; Zhong, Y.; Wang, Y.; Li, J.; Zhang, J.; Liu, J.; Zhao, Y.; Wu, Y. Chemosphere 2011, 85, 156. https://doi.org/10.1016/j.chemosphere.2011.06.038
  18. Guiochon, G. J. Chromatogr. A 2007, 1168, 101. https://doi.org/10.1016/j.chroma.2007.05.090
  19. Moliner-Martinez, Y.; Molins-Legua, C.; Verdu-Hernandez, J.; Campins-Falco, C. J. Chromatogr. A 2011, 1218, 6256. https://doi.org/10.1016/j.chroma.2011.07.026
  20. Buszewski, B.; Szumski, M.; Sus, S. LC-GC Eur. 2002, 15, 792.
  21. Unger, K. K.; Tanaka, N.; Machtejevas, E. Monolithic Silica in Separation Science, Concepts, Syntheses, Characterization, Modeling and Applications; Wiley-VCH: Weinheim, 2011.
  22. Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishozuka, N.; Tanaka, N.; Anal. Chem. 1996, 68, 3498. https://doi.org/10.1021/ac960281m
  23. Shintani, Y.; Zhou, X.; Furuno, M.; Minakuchi, H.; Nakanishi, K. J. Chromatogr. A 2003, 985, 351. https://doi.org/10.1016/S0021-9673(02)01447-4
  24. Nováková, L.; Matrysová, L.; Solichová, D.; Koupparis, M. A.; Solich, P. J. Chromatogr. B 2004, 813, 191. https://doi.org/10.1016/j.jchromb.2004.09.045
  25. Müller, C. E.; Gerecke, A. C.; Alder, A. C.; Scheringer, M.; Hungerbühler, K. Environ. Pollut. 2011, 159, 1419. https://doi.org/10.1016/j.envpol.2010.12.035
  26. US EPA (Environmental Protection Agency), Method 537, Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/ Tandem Mass Spectrometry (LC/MS/MS), September 2009, EPA/600/R-08/092.
  27. Inoue, K.; Okada, F.; Ito, R.; Kawaguchi, M.; Okanouchi, N.; Nakazawa, H. J. Chromatogr. B 2004, 810, 49. https://doi.org/10.1016/j.jchromb.2004.07.014
  28. Taniyasu, S.; Kannan, K.; So, M. K.; Gulkowska, A.; Sinclair, E.; Okazawa, T.; Yamashita, N. J. Chromatogr. A 2005, 1093, 89. https://doi.org/10.1016/j.chroma.2005.07.053
  29. Roosens, L.; D'Hollander, W.; Bervoets, L.; Reynders, H.; Campenhout, K. V.; Cornelis, C.; Heuvel, R. V. D.; Koppen, G.; Covaci, A. Environ. Pollut. 2010, 158, 2546. https://doi.org/10.1016/j.envpol.2010.05.022

Cited by

  1. Perfluoroalkyl acids in Daliao River system of northeast China: determination, distribution and ecological risk vol.75, pp.6, 2016, https://doi.org/10.1007/s12665-016-5345-7
  2. Analysis of a broad range of perfluoroalkyl acids in accipiter feathers: method optimization and their occurrence in Nam Co Basin, Tibetan Plateau pp.1573-2983, 2017, https://doi.org/10.1007/s10653-017-9948-z