• 제목/요약/키워드: Monolith

검색결과 159건 처리시간 0.029초

Preparation of Silica Monoliths with Macropores and Mesopores and of High Specific Surface Area with Low Shrinkage using a Template Induced Method

  • Guo, Jianyu;Lu, Yan;Whiting, Roger
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.447-452
    • /
    • 2013
  • In this study we report a new method for the synthesis of a silica monolithic column bed with bimodal pores (throughpores and mesopores). The template induced synthesis method was used to direct bimodal pores simultaneously instead of the usual post base-treating method. Block polymer Pluronic F127 was chosen as a dual-function template to form hierarchically porous silica monolith with both macropores and mesopores. This is a simplification of the method of monolithic column preparation. Poly(ethylene glycol) was used as a partial substitute for F127 can effectively prevent shrinkage during the monolith aging process without losing much surface area (944 $m^2/g$ to 807 $m^2/g$). More importantly, the resultant material showed a much narrower mesopore size (centered at 6 nm) distribution than that made using only F127 as the template reagent, which helps the mass transfer process. The solvent washing method was used to remove the remaining organic template, and it was proved to be effective enough. The new synthesis method makes the fabrication of the silica monolithic column (especially capillary column) much easier. All the structure parameters indicate that monolith PFA05 prepared by the above method is a good material for separation, with the merits of much higher surface area than usual commercial HPLC silica particles, suitable mesopore volume, narrow mesopore size distribution, low shrinkage and it is easily prepared.

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.

냉간시동시 자동차용 저온활성촉매의 성능 향상을 위한 수치적 설계 (Numerical Design of Light-off Auto-Catalyst for Reducing Cold-Start Emissions)

  • 정수진;김우승
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1264-1276
    • /
    • 2000
  • Light-off catalyst has been used for minimization of cold-start emissions. Improved cold-start performance of light-off catalyst needs the optimal design in terms of flow distribution, geometric surface area, precious metal loading, cell density and space velocity. In this study, these influential factors are numerically investigated using integrated numerical technique by considering not only 3-D fluid flow but also heat and mass transfer with chemical reactions. The present results indicate that uneven catalyst loading of depositing high active catalyst at upstream of monolith is beneficial during warm-up period but its effect is severely deteriorated when the space velocity is above 100,000 $hr^{-1}$ To maximize light-off performance, this study suggests that 1) a light-off catalyst be designed double substrate type; 2) the substrate with high GSA and high PM loading at face be placed at the front monolith; and 3) the cell density of the rear monolith be lower to reduce the pressure drop.

Development of Monolithic Catalyst System with Co-Ru-Zr for CO2 (dry) Reforming of Methane : Enhanced Coke Tolerance

  • Kim, Hyojin;You, Young-Woo;Heo, Iljeong;Chang, Tae-Sun;Hong, Ji Sook;Lee, Ki Bong;Suh, Jeong Kwon
    • 청정기술
    • /
    • 제23권3호
    • /
    • pp.314-324
    • /
    • 2017
  • To verify the viability of Co, Ru and Zr-based catalyst for $CO_2$ (dry) reforming reaction, catalysts were fabricated using cordierite, silicon carbide and rota monolithic substrates, and they were compared with the conventional $Co-Ru-Zr/SiO_2$ catalyst in terms of performance and durability. Cordierite monolith was showed high activity with the least amount of active component. In addition, when Cordierite monolith was coated with Co-Ru-Zr in various ways, most excellent performance was showed at a precursor solution coating method. In particular, when 0.9 wt% Co-Ru-Zr/Cordierite was used for reaction, it was observed that 95% $CO_2$ conversion was maintained for 300 h at $900^{\circ}C$.

하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구 (Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor)

  • 황철홍;정영식;이창언
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

근접장착식 촉매장치의 유동분포 측정 및 해석에 관한 연구 (A Study of Measurement and Analysis of Flow Distribution in a Close-Coupled Catalytic Converter)

  • 조용석;김득상;주영철
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.533-539
    • /
    • 2001
  • In this study, results from an experimental and numerical study of flow distribution in a close-coupled catalytic converter (CCC) are presented. The experiments were carried out using a glow measurement system. Flow distribution at the exit of the first monolith in the CCC was measured using a pitot tube under steady and transient flow conditions. Numerical analysis was done using a CF D code at the same test conditions, and the results were compared with the experimental results. Experimental results showed that the uniformity index of exhaust gas velocity decreases as Reynolds number increases. Under the steady flow conditions, flow through each exhaust pipe concentrates on a small region of the monolith. Under the transient flow conditions, flow through each exhaust pipe with the engine firing order interacts with each other to spread the flow over the monolith face. The numerical analysis results support the experimental results, and help explain the flow pattern in the entry region of the CCC.

6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석 (Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

초임계 이산화탄소를 이용한 다공성 고분자 Monolith 제조 (Preparation of Porous Polymer Monoliths in Supercritical Carbon Dioxide)

  • 강세란;주창식
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.21-26
    • /
    • 2005
  • 초임계 이산화탄소를 이용하여 다공성 고분자 모노리스를 제조하는 실험적 연구를 행하여, 단량체의 종류와 중합반응 조건들이 생성되는 고분자 모노리스의 물성에 미치는 영향을 실험적으로 조사하였다. 중합반응은 반응이 진행되는 동안 반응물의 상변화를 관찰할 수 있도록 사파이어 창을 부착한 고압 반응기 내에서 진행되었으며, 단량체의 농도가 매우 낮은 경우를 제외하고는 반응기 내부형태와 동일한 형상의 건조하고 다공성인 고분자 모노리스를 얻었을 수 있었다. 생성되는 고분자 모노리스의 비 표면적은 반응혼합물 중의 단량체 농도와 중합반응 압력에 따라 증가하였으며, 기계적 강도는 경도 보강제 MMA를 첨가하여 증대시킬 수 있었다.

소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(III) (A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method (III))

  • 정연길;최성철;박철원
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1337-1348
    • /
    • 1995
  • TZP/SUS- and ZT/SUS-functionally gradient materials (FGM) were fabricated by pressureless sintering in Ar-atmosphere. The sintering defects such as warping, frustrum formation, splitting and cracking which originated from shrinkage and sintering behaviors of metal and ceramics different from each other could be controlled by the adjustment with respect to the particle size and phase type of zirconia. The residual stresses generated on the metal and ceramic regions in FGM were characterized with X-ray diffraction method, and relaxed as the thickness and number of compositional gradient layer were increased. The residual stress states in TZP/SUS-FGM have irregular patterns by means of the different sintering behavior and cracking at ceramic-monolith. While in ZT/SUS-FGM, compressive stress is induced on ceramic-monolith by the volume expansion of monoclinic ZrO2 at phase transformation. Also, compressive stress is induced on metal-monolith by the constraint of warping which may be created to the metal direction by the difference of coefficient of thermal expansions. As a consequence, it has been verified that the residual stress generated on FGM is dominantly influenced by the thickness and number of compositional gradient layer, and the sintering defects and residual stress can be controlled by the constraint of the difference of shrinkage and sintering behaviors of each component.

  • PDF

2륜 자동차용 촉매 변환기 형상에 따른 배기온도 특성 (Exhaust Gas Temperature Characteristics of Catalytic Converter Shape for Motorcycle)

  • 이중섭;서정세;정한식;정효민;배재영
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.138-144
    • /
    • 2006
  • This research represents the catalytic converter for application in the motorcycle. Present research model type is a monolithic catalytic converter and this type has been widely used for satisfaction on and the regulations of pollutant emissions in automobiles. The experiment range is found for light-off temperature time of the catalyst converter. And we has to experiment for effective area of catalytic monolith. The experimental result indicated an increase effective area in the catalytic monolith. Specialty, it was found from the result that the more positive effect from result of thermal image camera in the megaphone model. The rate of effective area for base model was about 8.97% and megaphone model was 41.52%, 34.60%, 33.43%, 25.43% and 17.82% on the diffuser angle $4^{\circ}$ to $8^{\circ}$. Comparing with base type, megaphone type has more suitable for application to motorcycle.