Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.2.447

Preparation of Silica Monoliths with Macropores and Mesopores and of High Specific Surface Area with Low Shrinkage using a Template Induced Method  

Guo, Jianyu (Department of Chemistry, Shanghai Normal University)
Lu, Yan (School of Engineering and Innovation, Shanghai Institute of Technology)
Whiting, Roger (School of Applied Sciences, AUT University)
Publication Information
Abstract
In this study we report a new method for the synthesis of a silica monolithic column bed with bimodal pores (throughpores and mesopores). The template induced synthesis method was used to direct bimodal pores simultaneously instead of the usual post base-treating method. Block polymer Pluronic F127 was chosen as a dual-function template to form hierarchically porous silica monolith with both macropores and mesopores. This is a simplification of the method of monolithic column preparation. Poly(ethylene glycol) was used as a partial substitute for F127 can effectively prevent shrinkage during the monolith aging process without losing much surface area (944 $m^2/g$ to 807 $m^2/g$). More importantly, the resultant material showed a much narrower mesopore size (centered at 6 nm) distribution than that made using only F127 as the template reagent, which helps the mass transfer process. The solvent washing method was used to remove the remaining organic template, and it was proved to be effective enough. The new synthesis method makes the fabrication of the silica monolithic column (especially capillary column) much easier. All the structure parameters indicate that monolith PFA05 prepared by the above method is a good material for separation, with the merits of much higher surface area than usual commercial HPLC silica particles, suitable mesopore volume, narrow mesopore size distribution, low shrinkage and it is easily prepared.
Keywords
Silica monolith; Bimodal pores; Low shrinkage; Separation material; High surface area;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nakanishi, K.; Soga, N. J. Non-Cryst. Solids. 1992, 139, 1.   DOI   ScienceOn
2 Minakuchi, H.; Ishizuka, N.; Nakanishi, K.; Soga, N.; Tanaka, N. J. Chromatogr. A 1998, 828, 83.   DOI   ScienceOn
3 Tanaka, N.; Kobayashi, H.; Nakanishi, K. et al. Anal. Chem. 2001, 73, 420A.
4 Tanaka, N.; Kobayashi, H. Anal. Bioanal. Chem. 2003, 376, 298.
5 Fujimoto, C. J. High Resol. Chromatogr. 2000, 23, 89.   DOI
6 Kang, J. W.; Wistuba, D.; Schurig, V. Electrophoresis 2002, 23, 1116.   DOI
7 Chen, Z.; Nishiyama, T.; Hobo, T. et al. Anal. Chim. Acta 2004, 501, 17.   DOI   ScienceOn
8 Nakanishi, K. J. Porous Mater. 1997, 4, 67.   DOI   ScienceOn
9 Ishizuka, N.; Nakanishi, K.; Hirao, K.; Tanaka, N. J. Sol-Gel Science and Technology 2000, 19, 371.   DOI   ScienceOn
10 Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Tanaka, N. Anal. Chem. 2000, 72, 1275.   DOI   ScienceOn
11 Minakuchi, K.; Nakanishi, N.; Soga, N.; Ishizuka, N.; Tanaka, N. J. Chromatogr. A 1998, 797, 121.   DOI   ScienceOn
12 Nakanishi, K.; Shikata, H.; Ishizuka, N.; Koheiya, N.; Soga, N. J. High Resol. Chromatogr. 2000, 23, 106.   DOI
13 Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hirao, K.; Tanaka, N. Colloids and Surfaces A 2001, 187, 273.   DOI   ScienceOn
14 Galarneau, A.; Iapichella, J.; Brunel, D.; Fajula, F.; Bayram-Hahn Z.; Unger, K.; Puy, G.; Demesmay, C.; Rocca, J. L. J. Sep. Sci. 2006, 29, 844.   DOI   ScienceOn
15 Guiochon, G. J Chromatogr A 2007, 1168, 101.   DOI   ScienceOn
16 Ghanem, A.; Ikegami, T.; Tanaka, N. Chirality 2011, 23, 887.   DOI   ScienceOn
17 Iwasaki, M.; Miwa, S.; Ikegami, T.; Tomita, M.; Tanaka, N.; Ishihama, Y. Anal. Chem. 2010, 82, 2616.   DOI   ScienceOn
18 Sato, Y.; Nakanishi, K.; Hirao, K. et al. Colloids and Surfaces A 2001, 187, 117.   DOI   ScienceOn
19 Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. J. Chromatogr. A 1997, 762, 135.   DOI   ScienceOn
20 Alexandrldis, P.; Holzwarth, J. F.; Hattoa, T. A. Macromolecules 1994, 27, 2414.   DOI   ScienceOn
21 Wan, Y.; Shi, Y.; Zhao, D. Chem. Commun. 2007, 9, 897.