• Title/Summary/Keyword: Monolayer assembly

Search Result 68, Processing Time 0.025 seconds

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Self-Assembly and Electrochemical Properties of Viologen Particles (Viologen 분자의 자기조립과 전기화학적 특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.452-455
    • /
    • 2004
  • In this paper, investigations of the SAMs(self-assembled monolayers) of a thiol-fuctionalized viologen derivatives, $V_8SH$ and $SH_8V_8SH$, where, V is N,N'-dialkylbipyridinium (i.e. a viologen group), have been carried out by elucidate voltammetry date. The redox reactions are highly reversible and can be cycled many times without significant side reaction, which has been known as a nano-gram order mass detector through resonant frequency change self-assembly process of the viologen has been investigated with $QCM({\Delta}F)$. The assembling process of the $V_8SH$ and $SH_8V_8SH$ monolayers can be finished completely in about 1 hour. The measured frequency shift for $V_8SH$ and $SH_8V_8SH$ were about 351 and 172 Hz, respectively. From these values, we calculated that the mass adsorbed $V_8SH$ and $SH_8V_8SH$ were about 375 and 183 ng. We believe that this mass loss is caused by the simultaneous loss of the anions present within the monolayer for charge compensation of the viologen dications and some solvent.

  • PDF

Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces

  • Kobayashi, Hayato;Moronuki, Nobuyuki;Kaneko, Arata
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2008
  • We introduce a new fabrication process for antireflective structured surfaces. A 4-inch silicon wafer was dipped in a suspension of 300-nm-diameter silica particles dispersed in a toluene solution. When the wafer was drawn out of the suspension, a hexagonally packed monolayer structure of particles self-assembled on almost the complete wafer surface. Due to the simple process, this could be applied to micro- and nano-patterning. The self-assembled silica particles worked as a mask for the subsequent reactive ion etching. An array of nanometer-sized pits could be fabricated since the regions that correspond to the small gaps between particles were selectively etched off. As etching progressed, the pits became deeper and combined with neighboring pits due to side-etching to produce an array of cone-like structures. We investigated the effect of etching conditions on antireflection properties, and the optimum shape was a nano-cone with height and spacing of 500 nm and 300 nm, respectively. This nano-structured surface was prepared on a $30\;{\times}\;10-mm$ area. The reflectivity of the surface was reduced 97% for wavelengths in the range 400-700 nm.

Deposition of Poly(3-hexylthiophene)(P3HT) by Vapor Deposition and Patterning Using Self-Assembled Monolayers (Oxide 표면에 Self-Assembly Monolayers를 이용한 전도성 고분자 Poly(3-hexylthiophene)(P3HT) 증착 및 Patterning 연구)

  • Pang, Il-Sun;Kim, Hyun-Ho;Kim, Sung-Soo;Lee, Jae-Gab
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.664-668
    • /
    • 2008
  • Vapor phase polymerization of a conductive polymer on a $SiO_2$ surface can offer an easy and convenient means to depositing pure and conductive polymer thin films. However, the vapor phase deposition is generally associated with very poor adhesion as well as difficulty when patterning the polymer thin film onto an oxide dielectric substrate. For a significant improvement of the patternability and adhesion of Poly(3-hexylthiophene) (P3HT) thin film to a $SiO_2$ surface, the substrate was pre-patterned with n-octadecyltrichlorosilane (OTS) molecules using a ${\mu}$-contact printing method. The negative patterns were then backfilled with each of three amino-functionalized silane self-assembled monolayers (SAMs) of (3-aminopropyl) trimethoxysilane (APS), N-(2-aminoethyl)-aminopropyltrimethoxysilane (EDA), and (3- trimethoxysilylpropyl)diethylenetriamine (DET). The quality and electrical properties of the patterned P3HT thin films were investigated with optical and atomic force microscopy and a four-point probe. The results exhibited excellent selective deposition and significantly improved adhesion of P3HT films to a $SiO_2$ surface. In addition, the conductivity of polymeric thin films was relatively high (${\sim}13.51\;S/cm$).

Liquid Crystal Alignment by Photoreactive 4-Hydroxyazobenzene Thin Film (광감응성 4-Hydroxyazobenzene 박막의 액정 배향)

  • Lee, Won-Ju;Kim, Whan-Ki;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.308-313
    • /
    • 2005
  • The effects of molecular environments on photoisomerization of an azobenzene group were investigated using In-situ UV/Vis spectroscopy and optical anisotropy measurement technique. The reversible and repeatable photoisomeritation reactions of azobenzene were observed by irradiating the film containing 4-hydroxyazobenzene and by measuring absorption intensities of the characteristic bands of trans and cis isomers simultaneously. When the self-assembled monolayer with azobenzene groups was used as an alignment layer for a liquid crystal cell, the homeotropic alignment was induced due to their compact packing structures of azobenfene groups along the vertical direction of the substrate. By irradiating UV light on this cell, the trans-azobenzene groups change to cis-isomers through the photoisonlerieation and then resulting in the planar alignment of liquid crystal molecules.

UV를 이용한 IGZO 표면 상태 변화 및 전기적 특성 변화

  • Jo, Yeong-Je;Choe, Deok-Gyun;Mun, Yeong-Ung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.1-242.1
    • /
    • 2011
  • 산화물 반도체는 높은 이동도와 낮은 공정 온도, 넓은 밴드갭으로 인한 투명성등 많은 장정을 가지고 있어 최근 많이 연구되고 있다. 그 중에서도 InGaZnO (IGZO)는 In, Ga 함유량으로 박막의 전기적 특성을 쉽게 조절할 수 있고 상온에서 비정질 상태로 증착되어 균일성에 장점이 있다. IGZO 박막을 TFT에 적용 시 MOSFET과는 다르게 축적 상태에서 채널이 형성되기 때문에 산화물 반도체 내에 캐리어 농도는 TFT 특성에 많은 영향을 미친다. 또한, 실리콘 기반의 트랜지스터는 이온 주입 및 확산 공정을 통해서 선택적으로 $10^{20}/cm^3$ 이상의 고농도 도핑을 실시하여 좋은 트랜지스터 특성을 확보할 수 있으나 IGZO 박막에는 이러한 접근이 불가능하다. 따라서 IGZO 박막의 캐리어 농도를 조절할 수 있으면 소스/드레인과 반도체의 접촉 저항 감소 및 전계 효과 이동도등 많은 특성을 개선할 수 있다. 본 연구에서는 UV light를 이용하여 IGZO 박막의 캐리어 농도를 조절하였다. IGZO 박막은 UV light 조사로 인해 Mo와 IGZO박막의 접촉저항이 $3{\times}10^3\;{\Omega}^*cm$에서 $1{\times}10^2\;{\Omega}^*cm$로 감소하였다. 이는 UV 조사로 표면에 금속-OH 결합이 생성되어 IGZO 박막의 캐리어 농도가 ${\sim}5{\times}10^{15}/cm^3$에서 ${\sim}3{\times}10^{17}/cm^3$까지 증가하기 때문이다. 또한 표면에 생성된 OH기는 강한 친수성 성질을 보여주고 표면의 높은 에너지 상태는 Self-Assembly Monolayer (SAM) 공정 적용이 가능 하다. 본 실험에서는 SAM 공정을 적용하여 IGZO-based TFT 제작에 성공하였고, 이 TFT는 UV 조사 시간에 따라 전계 효과 이동도가 0.03 $cm^2/Vs$에서 2.1 $cm^2/Vs$으로 100배 정도 증가하였다.

  • PDF

Comparative Study of Tetrahydrothiophene and Thiophene Self Assembled Monolayers on Au(111): Structure and Molecular Orientation

  • Ito, Eisuke;Hara, Masahiko;Kanai, Kaname;Ouchi, Yukio;Seki, Kazuhiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1755-1759
    • /
    • 2009
  • Surface structure and molecular orientation of self-assembled monolayers (SAMs) formed by the spontaneous adsorption of tetrahydrothiophene (THT) and thiophene (TP) on Au(111) were investigated by means of scanning tunneling microscopy (STM) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STM imaging revealed that THT SAMs have a commensurate (3 ${\times}\;2\sqrt[]{3}$) structure containing structural defects in ordered domains, whereas TP SAMs are composed of randomly adsorbed domains and paired molecular row domains that can be described as an incommensurate packing structure. The NEXAFS spectroscopy study showed that the average tilt angle of the aliphatic THT ring and $\pi$-conjugated TP ring in the SAMs were calculated to be about $30^o\;and\;40^o$, respectively, from the surface normal. It was also observed that the $\pi$* transition peak in the NEXAFS spectrum of the TP SAMs is very weak, suggesting that a strong interaction between $\pi$-electrons and the Au surface arises during the self-assembly of TP molecules. In this study, we have clearly demonstrated that the surface structure and adsorption orientation of organic SAMs on Au(111) are strongly influenced by whether the cyclic ring is saturated or unsaturated.

Performance enhancement of Organic Thin Film Transistor by Ar Ion Beam treatment (Ar Ion Beam 처리를 통한 Organic Thin Film Transistor의 성능향상)

  • Jung, Suk-Mo;Park, Jae-Young;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.15-19
    • /
    • 2007
  • This paper reports the effects of Ar ion beam surface treatment on a $SiO_2$ dielectric layer in organic thin film transistors. We compared the electrical properties of pentacene-based OTFTs, treated by $O_2$ plasma or Ar ion beam treatments and characterized the states of the surface of the dielectric by using atomic force microscopy and X-ray photoelectron spectroscopy. For the sample which received $O_2$ plasma treatment, the mobility increased significantly but the on/off current ratio was found very low. The Ar ion beam-treated sample showed a very high on/off current ratio as well as a moderately improved mobility. XPS data taken from the dielectric surfaces after each of treatments exhibit that the ratio of between Si-O bonds and O-Si-O bonds was much higher in the $O_2$ plasma treated surface than in the Ar ion beam treated surface. We believe that our surface treatment using an inert gas, Ar, carried out an effective surface cleaning while keeping surface damage very low, and also the improved device performances was achieved as a consequence of improved surface condition.