• 제목/요약/키워드: Monolayer,

검색결과 1,200건 처리시간 0.028초

An Adsorption Process Study on the Self-Assembled Monolayer Formation of Octadecanethiol Chemisorged on Gold Surface

  • 김동호;노재권;;이혜원
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권3호
    • /
    • pp.276-280
    • /
    • 2001
  • The self-assembled formation of octadecanethiol (CH3(CH2)17SH) on a gold substrate was studied using a quartz crystal microbalance (QCM) and a scanning tunneling microscope (STM). From the QCM measurements at vario us concentrations of octadecanethiol solutions in hexane and alcohol, the adsorption process of octadecanethiol onto Au was confirmed to consist of two steps as follows: (i) fast but disordered adsorption and (ii) a thermodynamically controlled rearrangement for uniform packing of octadecanethiol. Also, it was revealed that the adsorption rate became faster in ethanol than in hexane since less solubility of octadecanethiol in ethanol could help the formation of the monolayers. At 5 ${\times}$10-7 M solution, the monolayer formation was monitored by STM. The morphology of monolayer region was initially circular (diameter size: 7.26 $\pm$ 2.1 nm) and gradually changed to a stripe type after several minutes. At higher concentration, the self-assembled monolayer was formed immediately after the solution was introduced to a substrate.

콜로이드 입자의 자기 배열성을 이용한 Monolayer 형성에 관한 연구 (Process Development of Self-Assembled Monolayers(SAMs) of Colloidal Particles)

  • 고화영;이해원;김주선;문주호
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.981-987
    • /
    • 2002
  • $St\"{o}ber$ process를 이용하여 단분산 콜로이드 실리카를 제조하였다. 초기물질인 TEOS(Tetraethylorthosilicate)와 $NH_4OH$, 에탄올 및 증류수의 함유량을 조절하여 100 nm급, 200 nm급, 300 nm급 크기의 단분산 실리카 입자를 제조할 수 있었고, 제조된 실리카 입자는 Scanning Electron Microscope(SEM) 및 laser scattering particle analyzer를 통해 관찰하였다. Dipcoating 공정을 이용하여 제조된 300 nm 크기의 콜로이드 실리카의 자기 배열성(self-assembly) 형성에 관한 연구를 진행하였다. 다양한 코팅 공정 변수(표면장력, 표면전하, 입자의 함유량)의 조절을 통하여 dip coating시에 자기 배열성 단층막(monolayer)을 형성해 낼 수 있는 조건을 최적화하였고, SEM으로 관찰해 본 결과, 최적 조건 상태에서 비교적 넓은 영역 (1.5 mm ${\times}$ 1.5 mm)에서 hexagonally ordered packing된 콜로이드 입자 결정 단층막을 얻을 수 있었다.

초음파 방법을 이용한 실리카 나노비드의 단층 정렬에 관한 연구 (Ultrasound-Aided Monolayer Assembly of Spherical Silica Nanobeads)

  • 윤상희;윤서영;이진석
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.298-305
    • /
    • 2013
  • 스토버 방법(St$\ddot{o}$ber method)을 이용하여 균일한 크기의 실리카 나노비드(silica nanobead)를 합성하였으며 초음파(sonication) 방법을 이용하여 분자 처리된 유리 기판 위에 실리카 나노비드를 단층(monolayer)으로 정렬시켰다. 유리기판위에 처리된 분자층은 3-chloropropyltrimethoxysilane (CP-TMS)와 polyethyleneimine (PEI)가 사용되어졌고 합성된 나노비드는 톨루엔에 분산시킨 뒤 초음파방법으로 유기기판위에 부착되어졌다. 수행되어진 초음파방법은 분자 처리된 유리 기판을 단독으로 사용하는 SO (sonication without stacking) 모드와 두 개의 깨끗한 유리 기판 사이에 분자 처리된 유리 기판을 삽입하여 사용하는 SS (sonnication with stacking) 모드로 구분지어 적용되었으며, 기판위에 정렬된 실리카 나노비드의 무게는 마이크로 저울(microbalance)을 이용하여 측정한 뒤 점유도(degree of coverage, DOC)를 계산하였다. 결론적으로, SO 모드에서는 DOC가 단기간에 가파르게 상승하여 140% 이상까지 도달했지만 다층(multi-layer)구조가 많이 발견되는 특징이 있었고, SS 모드에서는 DOC가 평형에 도달하는 시간이 SO 모드보다 느리게 진행되었지만 보다 밀집(close-packing)된 형태의 단층구조가 관측되었다.

Effects of Local Anesthetics on the Rate of Rotational Mobility of Phospholipid Liposomes

  • Chung, In-Kyo;Kim, Dae-Gyeong;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.279-284
    • /
    • 2000
  • Using fluorescence probes, 2-(9-anthroyloxy) stearic acid (2- AS) and 12-(9-anthroyloxy) stearic acid (12-AS), we determined the differential effects of local anesthetics (tetracaine-HCI, bupivacaine-HCI, lidocaine-HCI, prilocaine-HCI and procaine-HCI) on the differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total phospholipid fraction liposome that is extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were$0.051{\pm}0.001$ and $0.096{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. Local anesthetics in a dosedependent manner decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer, but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior, but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Effects of Au Nanoparticle Monolayer on or Under Graphene for Surface Enhanced Raman Scattering

  • Kim, B.Y.;Jung, J.H.;Sohn, I.Y.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.636-636
    • /
    • 2013
  • Since first discovery of strong Raman spectrum of molecules adsorbed on rough noble metal, surface enhanced Raman scattering (SERS) has been widely used for detection of molecules with low concentration. Surface plasmons at noble metal can enhance Raman spectrum and using Au nanostructures as substrates of SERS has advantages due to it has chemical stability and biocompatibility. However, the photoluminescence (PL) background from Au remains a problem because of obtaining molecular vibration information. Recently, graphene, two-dimensional atomic layer of carbon atoms, is also well known as PL quenchers for electronic and vibrational excitation. In this study, we observed SERS of single layer graphene on or under monolayer of Au nanoparticles (NPs). Single layer graphene is grown by chemical vapor deposition and transferred onto or under the monolayer of Au NPs by using PMMA transfer method. Monolayer of Au NPs prepared using Langmuir-Blodgett method on or under graphene surface provides closed and well-packed monolayer of Au NPs. Scanning electron microscopy (SEM) and Raman spectroscopy (WItec, 532 nm) were performed in order to confirm effects of Au NPs on enhanced Raman spectrum. Highly enhanced Raman signal of graphene by Au NPs were observed due to many hot-spots at gap of closed well-packed Au NPs. The results showed that single layer graphene provides larger SERS effects compared to multilayer graphene and the enhancement of the G band was larger than that of 2D band. Moreover, we confirm the appearance of D band in this study that is not clear in normal Raman spectrum. In our study, D band appearance is ascribed to the SERS effect resulted from defects induced graphene on Au NPs. Monolayer film of Au NPs under the graphene provided more highly enhanced graphene Raman signal compared to that on the graphene. The Au NPs-graphene SERS substrate can be possibly applied to biochemical sensing applications requiring highly sensitive and selective assays.

  • PDF

어류혈청이 메기(Silurus asotus) 간세포의 단층배양에 미치는 영향 (Effect of Fish Serum on the Primary Monolayer Culture of Catfish (Silurus asotus) Hepatocytes)

  • 권혁추;최성희;김은희;한덕우;권준영
    • 한국수산과학회지
    • /
    • 제39권1호
    • /
    • pp.23-26
    • /
    • 2006
  • Effects of sera from several fish species and insulin on the development of cultured Silurus asotus hepatocytes were investigated. Hepatocytes with high viability (95%) were obtained from the livers of male catfish by two step collagenase perfusion. Isolated hepatocytes, initially showed a typical round-shape, firmly attached to the culture dish within 24 h. In the presence of catfish serum, hepatocytes attached each other, spread well on the dish and developed into monolayer after 3-4 days of incubation. Cells within the established monolayer became polygonal in shape and their nuclei and boundaries being clearly visible under the microscope. In contrast, when incubated in FBS-supplemented or serum-free medium, cells managed to form small clusters, each made of 2-10 cells. Cells in FBS-supplemented medium further developed into larger clusters. However, these clusters failed to develope into monolayer. In addition, when insulin was deprived from culture medium, formation of monolayer also failed. From these data, it can be concluded that the presence of both catfish serum and insulin is necessary for the formation of monolayer of catfish hepatocytes and the functional role of fish serum may differ from that of insulin and can not be displaced by FBS-supplementation.

Differential Effects of Local Anesthetics on Rate of Rotational Mobility between Hydrocarbon Interior and Surface Region of Model Membrane Outer Monolayer

  • Chung, In-Kyo;Cha, Seong-Kweon;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.41-46
    • /
    • 2000
  • Using fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS), we evaluated the differential effects of local anesthetics on differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total lipid fraction liposome extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were $0.078{\pm}0.001$ and $0.114{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. In a dose-dependent manner, the local anesthetics decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach

  • Chuan, M.W.;Wong, Y.B.;Hamzah, A.;Alias, N.E.;Sultan, S. Mohamed;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.213-221
    • /
    • 2022
  • Silicon carbide (SiC) is a binary carbon-silicon compound. In its two-dimensional form, monolayer SiC is composed of a monolayer carbon and silicon atoms constructed as a honeycomb lattice. SiC has recently been receiving increasing attention from researchers owing to its intriguing electronic properties. In this present work, SiC nanoribbons (SiCNRs) are modelled and simulated to obtain accurate electronic properties, which can further guide fabrication processes, through bandgap engineering. The primary objective of this work is to obtain the electronic properties of monolayer SiCNRs by applying numerical computation methods using nearest-neighbour tight-binding models. Hamiltonian operator discretization and approximation of plane wave are assumed for the models and simulation by applying the basis function. The computed electronic properties include the band structures and density of states of monolayer SiCNRs of varying width. Furthermore, the properties are compared with those of graphene nanoribbons. The bandgap of ASiCNR as a function of width are also benchmarked with published DFT-GW and DFT-GGA data. Our nearest neighbour tight-binding (NNTB) model predicted data closer to the calculations based on the standard DFT-GGA and underestimated the bandgap values projected from DFT-GW, which takes in account the exchange-correlation energy of many-body effects.