DOI QR코드

DOI QR Code

An Adsorption Process Study on the Self-Assembled Monolayer Formation of Octadecanethiol Chemisorged on Gold Surface


Abstract

The self-assembled formation of octadecanethiol (CH3(CH2)17SH) on a gold substrate was studied using a quartz crystal microbalance (QCM) and a scanning tunneling microscope (STM). From the QCM measurements at vario us concentrations of octadecanethiol solutions in hexane and alcohol, the adsorption process of octadecanethiol onto Au was confirmed to consist of two steps as follows: (i) fast but disordered adsorption and (ii) a thermodynamically controlled rearrangement for uniform packing of octadecanethiol. Also, it was revealed that the adsorption rate became faster in ethanol than in hexane since less solubility of octadecanethiol in ethanol could help the formation of the monolayers. At 5 ${\times}$10-7 M solution, the monolayer formation was monitored by STM. The morphology of monolayer region was initially circular (diameter size: 7.26 $\pm$ 2.1 nm) and gradually changed to a stripe type after several minutes. At higher concentration, the self-assembled monolayer was formed immediately after the solution was introduced to a substrate.

Keywords

References

  1. Langmuir v.4 no.546 Strong, L.;Whitesides, G. M.
  2. Chem. Phys. v.91 no.4421 Chidsey, C. E. D.;Liu, G. Y.;Rowntree, P.;Scoles, G. J.
  3. Langmuir v.10 no.367 Liu, G. Y.;Salmeron, M. B.
  4. Langimuir v.16 no.2045 Noh, J.;Hara, M.
  5. J. Phys. Chem. B. v.104 no.7411 Noh, J.;Murase, T.;Nakajima, K.;Lee, H.;Hara, M.
  6. J. Chem. Phys. v.93 no.767 Nuzzo, R. G.;Korenic, E. M.;Dubois, L. H.
  7. J. Am. Chem. Soc. v.113 no.2805 Widrig, C. A.;Alves, C. A.;Porter, M. D.
  8. J. Am. Chem. Soc. v.111 no.321 Bain, C. D.;Troughton, E. B.
  9. Phys. v.155 no.206 Sauerbrey, G. Z.
  10. Angew. Chem., Int. Ed. Engl. v.30 no.569 Haussling, L.;Michel, B.;Ringsdorf, H.;Rohrer, H.
  11. J. Electrochem. Soc. v.138 no.L23 Sun, L.;Crooks, R. M.
  12. Appl. Phys. Lett. v.63 no.147 Mizutani, W.;Michel, B.;Schierle, R.;Wolf, H.;Rohrer, H.
  13. J. Vac. Sci. Technol., A v.10 no.926 Buck, M.
  14. Phys. Rev. B v.57 no.12476 Schreiber, F.
  15. Sur. Sci. v.397 no.L285 Eberhardt, A.;Fenter, P.;Eisenberger, P.
  16. Langmuir v.9 no.1955 Hahner, G.;Woll, C.;Buck, M.;Grunze, M.
  17. Science v.272 no.1145 Poirier, G. E.;Pylant, E. D.
  18. Langmuir v.13 no.2019 Poirier, G. E.
  19. Langmuir v.14 no.855 Yamada, R.;Uosaki, K.
  20. J. Phys. Chem. v.102 no.2310 Kondoh, H.;Kodama, C.;Nozoye, H.
  21. J. Am. Chem. Soc. v.117 no.12528 Schlenoff, J. B.;Li, M.;Ly, H.
  22. Langmuir v.7 no.620 Thomas, R. C.;Sun, L.;Crooks, R. M.;Ricco, A. J.
  23. J. Am. Chem. Soc. v.109 no.3559 Porter, M. D.;Bright, T. B.;Allara, D. L.;Chidsey, C. E.
  24. Langmuir v.9 no.1941 Kim, Y. T.;McCarley, R. L.;Bard, A. J.
  25. J. Phys. Chem. v.92 no.2597 Lee, H.;Kepley, L. J.;Hong, H. G.;Akhter, S.;Mallouk, T. E.
  26. Molecular Crystals and Liquid Crystals v.337 no.49 Eu, S.;Paik, W. K.
  27. Langmuir v.10 no.1186 Rowe, G. K.;Creager, S. E.
  28. J. Am. Chem. Soc. v.115 no.12391 Schneider, T. W.;Buttry, D. A.
  29. Appl. Phys. Lett. v.57 no.2907 Nejoh, H.
  30. J. Phys. Chem. v.99 no.8684 Venkataraman, B.;Flynn, G. W.;Wilbur, J. L.;Folkers, J. P.;Whitesides, G. M.
  31. Phys. Rev. Lett. v.66 no.1721 Chambliss, D. D.;Whilson, R. J.;Chang, S.
  32. Surf. Sci. Rep. v.16 no.378 Zinke-Allmang, M.;Feldman, L. C.;Grabow, M. H.
  33. J. Am. Chem. Soc. v.115 no.9389 Sellers, H.;Ulman, A.;Shnidman, Y.;Eilers, J. E.
  34. Appl. Phys. v.65 no.375 Gerlach, R.;Polanski, G.;Rubahn, H. G.
  35. Langmuir v.12 no.2737 Camillone, N. et al.
  36. J. Am. Chem. Soc. v.114 no.1222 Alves, C. A.;Smith, E. L.;Poter, M. D.
  37. Angew. Chem. Int. Ed. Engl. v.30 no.569 Haussling, L.;Michel, B.;Ringsdorf, H.;Rohrer, H.
  38. Langmuir v.9 no.4 Edinger, K.;Golzhauser, A.;Demota, K.;Woll, C.;Grunze, M.
  39. Langmuir v.10 no.614 Schonenberger, C.;Sondag-Huethorst, J. A. M.;Jorritsma, J.;Fokkink, L. G.
  40. Phys. Rev. B v.48 no.1771 Durig, U.;Zuger, O.;Michel, B.;Haussling, L.;Ringsdorf, H.
  41. Europhys. Lett. v.23 no.421 Anselmetti, D.

Cited by

  1. A Study of Alkanethiol Film on Au by STM-Induced Luminescence vol.10, pp.2, 2001, https://doi.org/10.1142/s0218625x0300486x
  2. Sensitivity of metal thiolate piezoquartz sensor coatings to hydrocarbons, methanol, and water vol.42, pp.6, 2001, https://doi.org/10.1007/s11237-006-0069-5
  3. Self-assembled alkanethiol structures on gold: A further insight into the origins of structural rearrangement phenomena vol.604, pp.5, 2001, https://doi.org/10.1016/j.susc.2009.12.022
  4. Quartz roughness affect on W03 coated QCM vol.253, pp.1, 2001, https://doi.org/10.1088/1742-6596/253/1/012046
  5. Detection of 2,4-Dinitrotoluene (DNT) as a Model System for Nitroaromatic Compounds via Molecularly Imprinted Short-Alkyl-Chain SAMs vol.27, pp.11, 2001, https://doi.org/10.1021/la105128q
  6. Detection of 2,4-Dinitrotoluene (DNT) as a Model System for Nitroaromatic Compounds via Molecularly Imprinted Short-Alkyl-Chain SAMs vol.27, pp.11, 2001, https://doi.org/10.1021/la105128q
  7. Effects of Solvent on the Formation of Octanethiol Self-Assembled Monolayers on Au(111) at High Temperatures in a Closed Vessel: A Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy St vol.116, pp.42, 2001, https://doi.org/10.1021/jp307940g
  8. Temperature Stability of Three Commensurate Surface Structures of Coronene Adsorbed on Au(111) from Heptanoic Acid in the 0 to 60 °C Range vol.117, pp.6, 2001, https://doi.org/10.1021/jp3115435
  9. Helium Diffraction Study of Low Coverage Phases of Mercaptoundecanol and Octadecanethiol Self-Assembled Monolayers on Au(111) Prepared by Supersonic Molecular Beam Deposition vol.117, pp.19, 2001, https://doi.org/10.1021/jp400072w
  10. Electrochemical study of self-assembled monolayer adsorption vol.18, pp.8, 2001, https://doi.org/10.1007/s10008-014-2455-6
  11. Processing Follows Function: Pushing the Formation of Self-Assembled Monolayers to High-Throughput Compatible Time Scales vol.6, pp.22, 2001, https://doi.org/10.1021/am5057689
  12. A versatile and compact surface plasmon resonance spectrometer based on single board computer vol.91, pp.1, 2001, https://doi.org/10.1063/1.5111829