• 제목/요약/키워드: Monocular depth estimation

검색결과 23건 처리시간 0.026초

Deep Learning Based Monocular Depth Estimation: Survey

  • Lee, Chungkeun;Shim, Dongseok;Kim, H. Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.297-305
    • /
    • 2021
  • Monocular depth estimation helps the robot to understand the surrounding environments in 3D. Especially, deep-learning-based monocular depth estimation has been widely researched, because it may overcome the scale ambiguity problem, which is a main issue in classical methods. Those learning based methods can be mainly divided into three parts: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning trains the network from dense ground-truth depth information, unsupervised one trains it from images sequences and semi-supervised one trains it from stereo images and sparse ground-truth depth. We describe the basics of each method, and then explain the recent research efforts to enhance the depth estimation performance.

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • ;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

컨볼루션 뉴럴 네트워크와 키포인트 매칭을 이용한 짧은 베이스라인 스테레오 카메라의 거리 센싱 능력 향상 (Improving Detection Range for Short Baseline Stereo Cameras Using Convolutional Neural Networks and Keypoint Matching)

  • 박병재
    • 센서학회지
    • /
    • 제33권2호
    • /
    • pp.98-104
    • /
    • 2024
  • This study proposes a method to overcome the limited detection range of short-baseline stereo cameras (SBSCs). The proposed method includes two steps: (1) predicting an unscaled initial depth using monocular depth estimation (MDE) and (2) adjusting the unscaled initial depth by a scale factor. The scale factor is computed by triangulating the sparse visual keypoints extracted from the left and right images of the SBSC. The proposed method allows the use of any pre-trained MDE model without the need for additional training or data collection, making it efficient even when considering the computational constraints of small platforms. Using an open dataset, the performance of the proposed method was demonstrated by comparing it with other conventional stereo-based depth estimation methods.

단안 영상 시퀸스에서 움직임 추정 기반의 3차원 깊이 정보 추출 알고리즘 (3D Depth Information Extraction Algorithm Based on Motion Estimation in Monocular Video Sequence)

  • 박준호;전대성;윤영우
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.549-556
    • /
    • 2001
  • 2차원 영상으로 부터 3차원 영상으로 복원하는 일은 일반적으로 카메라의 초점에서 영상 프레임의 각 픽셀까지의 깊이 정보가 필요하고, 3차원 모델의 복원에 관한 일반적인 수작업은 많은 식나과 비용이 소모된다. 본 논문에서는 카메라의 움직임이 포함되어 있는 단안 영상 시퀸스로부터 3차원 영상 제작에 필요한 상대적인 깊이 정보를 실시간으로 추출하는 알고리즘을 제안하고, 하드웨어를 구현하기 위한여 알고리즘을 단순화하였다. 이 알고리즘은 카메라 이동에 의한 영상의 모든 점들의 움직임은 깊이 정보의 종속적이라는 사실에 기반을 두고 있다. 불록매칭 알고리즘에 기반을 둔 전역 움직임 탐색에 의한 움직임 벡터를 추출한 후, 카메라 회전과 확대/축소에 관한 카메라 움직임 보상을 실행하고 깉이 정보 추출 과정이 전개된다. 깊이 정보 추출 과정은 단안 영상에서 객체의 이동처리를 분석하여 움직임 벡터를 구하고 프레임내의 모든 픽셀에 대한 평균 깊이를 계산한 후, 평균 깊이에 대한 각 블록의 상대적 깊이를 산출하였다. 모의 실험 결과 전경과 배경에 속하는 영역의 깊이는 인간 시각 체계가 인식하는 상대적인 깊이와 일치한다는 것을 보였다.

  • PDF

딥러닝 기반 영상 주행기록계와 단안 깊이 추정 및 기술을 위한 벤치마크 (Benchmark for Deep Learning based Visual Odometry and Monocular Depth Estimation)

  • 최혁두
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.114-121
    • /
    • 2019
  • This paper presents a new benchmark system for visual odometry (VO) and monocular depth estimation (MDE). As deep learning has become a key technology in computer vision, many researchers are trying to apply deep learning to VO and MDE. Just a couple of years ago, they were independently studied in a supervised way, but now they are coupled and trained together in an unsupervised way. However, before designing fancy models and losses, we have to customize datasets to use them for training and testing. After training, the model has to be compared with the existing models, which is also a huge burden. The benchmark provides input dataset ready-to-use for VO and MDE research in 'tfrecords' format and output dataset that includes model checkpoints and inference results of the existing models. It also provides various tools for data formatting, training, and evaluation. In the experiments, the exsiting models were evaluated to verify their performances presented in the corresponding papers and we found that the evaluation result is inferior to the presented performances.

자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정 (Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving)

  • 황승준;박성준;백중환
    • 한국항행학회논문지
    • /
    • 제27권2호
    • /
    • pp.182-189
    • /
    • 2023
  • 깊이 추정은 차량, 로봇, 드론의 자율주행을 위한 3차원 지도 생성의 핵심 기술이다. 기존의 센서 기반 깊이 추정 방식은 정확도는 높지만 가격이 비싸고 해상도가 낮다. 반면 카메라 기반 깊이 추정 방식은 해상도가 높고 가격이 저렴하지만 정확도가 낮다. 본 연구에서는 무인항공기 카메라의 깊이 추정 성능 향상을 위해 Self-Attention 기반의 비지도 단안 카메라 영상 깊이 추정을 제안한다. 네트워크에 Self-Attention 연산을 적용하여 전역 특징 추출 성능을 향상시킨다. 또한 카메라 파라미터를 학습하는 네트워크를 추가하여 카메라 칼리브레이션이 안되어있는 이미지 데이터에서도 사용 가능하게 한다. 공간 데이터 생성을 위해 추정된 깊이와 카메라 포즈는 카메라 파라미터를 이용하여 포인트 클라우드로 변환되고, 포인트 클라우드는 Octree 구조의 점유 그리드를 사용하여 3D 맵으로 매핑된다. 제안된 네트워크는 합성 이미지와 Mid-Air 데이터 세트의 깊이 시퀀스를 사용하여 평가된다. 제안하는 네트워크는 이전 연구에 비해 7.69% 더 낮은 오류 값을 보여주었다.

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • 한국멀티미디어학회논문지
    • /
    • 제19권9호
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

단안평가법(MEM)을 이용한 조절지체에 대한 연구 (Study of Accomodation-lag using Monocular Estimation Method(MEM))

  • 박은규;서정익
    • 한국정보컨버전스학회논문지
    • /
    • 제6권2호
    • /
    • pp.51-55
    • /
    • 2013
  • 가까운 물체를 보기 위해서 조절이 일어난다. 이 조절은 개인마다 다른 특징이 있다. 이론적 조절력과 실제 조절력도 차이가 생긴다. 이를 조절지체라 한다. 조절지체에 직접적인 영향을 미치는 것은 초점심도이다. 초점심도는 동공크기와 굴절력에 영향을 받는다. 동공크기가 작을수록, 굴절력이 높을수록 초점심도가 깊어지게 된다. 초점심도가 깊어짐에 따라 조절지체가 많이 발생하게 된다. 본 논문에서는 굴절력과 조절지체의 관계에 대한 연구를 하였다. 조절지체를 측정하기 위해서 단안평가법을 이용하였다. 단연평가법으로 측정한 결과 조절지체는 굴절력이 증가함에 따라 같이 증가하는 경향을 나타내었다. 전체 조절 지체량은 0.51D로 측정되었다. 남성은 0.52D, 여성은 0.49D로 측정되었다. 성별에 따른 조절지체량도 굴절력이 증가함에 따라 같이 증가하는 경향을 보였다.

  • PDF

단안 영상에서 인간 오브젝트의 고품질 깊이 정보 생성 방법 (High-Quality Depth Map Generation of Humans in Monocular Videos)

  • 이정진;이상우;박종진;노준용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-11
    • /
    • 2014
  • 단안 영상에서 3차원 입체영상으로 변환한 결과물의 품질은장면의 물체들에게 부여한 깊이 정보의 정확도에 의존적이다. 영상의 매 프레임마다 장면의 물체들의 깊이 정보를 수동으로 입력하는 것은 많은 시간을 필요로 하는 노동집약적인 작업이다. 특히, 높은 자유도를 가진 관절형 물체인 인간의 몸은 고품질 입체변환에 있어서 가장 어려운 물체 중에 하나이다. 다양한 스타일의 옷, 액세서리, 머리카락들이 만드는 매우 복잡한 실루엣은 문제를 더욱 어렵게 한다. 본 논문에서는 단안 영상에 나타난 인간 오브젝트의 고품질 깊이 정보를 생성하는 효율적인 방법을 제안한다. 먼저, 적은 수의 사용자입력을 기반으로 3 원 템플릿 모델을 순차 관절 각도 제약을 가진 자세 추정 방법을 통해서 영상에 등장하는 2차원 인간 오브젝트에 정합한다. 정합된 3차원 모델로부터 초기 깊이 정보를 획득한 뒤, 컬러 세그멘테이션 방법을 기반으로 한 부분 깊이 전파 방법을 통해 세밀한 표현을 보장하며 누락된 영역을 포함하는 최종 깊이 정보를 생성한다. 숙련된 아티스트들의 수작업 결과물과 제안된 방법의 결과물을 비교한 검증 실험은 제안된 방법이 단안 영상에서 동등한 수준의 깊이 정보를 효율적으로 생성한다는 것을 보여준다.

하드 파라미터 쉐어링 기반의 보행자 및 운송 수단 거리 추정 (Pedestrian and Vehicle Distance Estimation Based on Hard Parameter Sharing)

  • 서지원;차의영
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.389-395
    • /
    • 2022
  • 심층 학습 기술의 발전으로 인해 분류, 객체 검출, 분할과 같은 시각 정보를 이용한 심층 학습이 다양한 분야에서 활용되고 있다. 그 중 자율 주행은 시각 데이터를 잘 활용하는 대표적인 분야 중 하나이다. 본 논문에서는 도로 위의 사람과 운송수단 객체에 대한 개별적인 깊이 값을 예측하는 망을 제안한다. 제안하는 모델은 YOLOv3와 Monodepth를 기반으로 하며, 하드 파라미터 쉐어링을 이용한 인코더와 디코더를 통해 객체 검출과 깊이 추정을 동시에 수행한다. 또한 주의 집중 기법을 사용하여 객체 검출 및 깊이 추정의 정확도를 높이고자 하였다. 깊이 추정은 단안 이미지를 통해 이루어지며, 자가 학습 방법을 통해 학습을 수행하였다.