• 제목/요약/키워드: Monoclinic structure

검색결과 270건 처리시간 0.026초

Niclosamide monohydrate, $C_{13}H_8Cl_2N_2O_4\cdotH_2O$의 결정 및 분자구조 (The Crystal and Molecular Structure of Niclosamide monohydrate, $C_{13}H_8Cl_2N_2O_4\cdotH_2O$)

  • 김의성;신현소
    • 한국결정학회지
    • /
    • 제4권1호
    • /
    • pp.1-5
    • /
    • 1993
  • 니클로사미드 일수화물의 결정구조는 흑연으로 단색화된 Mo-Ka 방사선을 사용하는 자동 CAD4 회절 기로 측정된 1976개의 독립반점을 이용하여 결정되었다. 결정계는 단사정계이며, 공간군은 P211c이고, 293k에서 단위세포 상수는 a=11.331(3), b=6.964 (2), c=7.347(4)A, p=98.20(3)°, Z=4이다. 구조는 ggg Parity군에 속하는 반불변수를 이용하는 직접법으로 해석하였으며, 완전행렬 최소자승법으로 정밀화하여 최종 신뢰도 R=0.046인 모형을 구하였다. 분자 모양은 ab평면상에 평행하게 놓이는 평면성 구조를 나타낸다.

  • PDF

The Crystal and Molecular Structure of Sulfapyridine

  • Koo, Chung-Hoe;Lee, Young-Ja
    • Archives of Pharmacal Research
    • /
    • 제2권2호
    • /
    • pp.99-110
    • /
    • 1979
  • The crystal structure of sulfapyridine, $C_{11}H_{11}N_{3}O_{2}S$, has been determined by X-ray diffraction method. The compound crystallizees in the monoclinic space group C2/c with a = 12, 80(4), b= 11.72(4), $c= 15.36(5){\AA}, {\beta}= 94(3)^{\circ}$and Z = 8. A total of 1133 observed reflections were collected by the Weissenberg method with CuKaradiation. Structure was solved by the heavy atom method and refined by isostropic block-diagonal least-squares method to the R value of 0.14. The nitrogen in the pyridine ring of sulfapyridine is associated with an extra-annular hydrogen. The C (benzene ring) S-N-C (pyridine ring) group adopts the gauche form with a fonformational angle of $71^{\circ}$. The benzene ring are inclined at angle of $84^{\circ}.to the pyridine ring plane. Sulfapyridine shows three different hydrogen bonding in the crystal. They are two N-H...O hydrogen bonds with the distance of 2.90 and 2.98${\AA}$ respectively, and on N-H...N with the distance of 3.06 ${\AA}$.

  • PDF

Chromium(III) Complex Obtained from Dipicolinic Acid: Synthesis, Characterization, X-Ray Crystal Structure and Electrochemical Studies

  • Ghasemi, Khaled;Rezvani, Ali Reza;Razak, Ibrahim Abdul;Moghimi, Abolghasem;Ghasemi, Fatemeh;Rosli, Mohd Mustaqim
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3093-3097
    • /
    • 2013
  • The synthesis, X-ray crystallography, spectroscopic (IR, UV-vis), and electrochemical properties of the title compound, $[H_3O][Cr(dipic)_2][H_3O^+.Cl^-]$ (1), ($H_2dipic$ = 2,6-pyridinedicarboxylic acid), are reported. This complex crystallizes in the monoclinic space group Cc with a = 14.9006(10) ${\AA}$, b = 12.2114(8) ${\AA}$, c = 8.6337(6) ${\AA}$, ${\alpha}=90.00^{\circ}$, ${\beta}=92.7460(10)^{\circ}$, ${\gamma}=90.00^{\circ}$, and V = 1569.16(18) ${\AA}^3$ with Z = 4. The hydrogen bonding and noncovalent interactions play roles in the stabilization of the structure. In order to gain a better understanding of the most important geometrical parameters in the structure of the complex, atoms in molecules (AIM) method at B3LYP/6-31G level of theory has been employed.

디플루니살의 불균일 결정구조 (Disordered Crystal Structure of Diflunisal $(C_{13}H_{8}F_{2}O_{3})$)

  • 김양배;박일영
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권1호
    • /
    • pp.55-59
    • /
    • 1996
  • The crystal structure of diflunisal, 2',4'-difluoro-4-hydroxy-3-biphenyl-carboxylic acid, was determined by single crystal X-ray diffraction technique. The compound was recrystallized from a mixture of acetone and water in monoclinic, space group C2/c, with $a\;=\;34.666(6),\;b\;=\;3.743(1),\;c\;=\;20.737(4)\;{\AA},\;{\beta}=\;110.57(2)^{\circ}$, and Z = 8. The calculated density is $1.324\;g/cm^3$. The structure was solved by the direct method and refined by full matrix least-squares procedure to the final R value of 0.045 for 1299 observed reflections. It was found that the molecules in the crystal are partially disordered, that is, the two equivalent conformers $(180^{\circ}$ rotated ones through C(1)-C(7)) are packed alternatively without regular symmetry or sequence. The two phenyl rings of the biphenyl group is tilted to each other by the dihedral angle of $43.3^{\circ}$. The carboxyl group at the salicylic moiety is just coplanar to the phenyl ring, and the planarity of this salicylic moiety is stabilized by an intramolecular hydrogen bond of O(3)-H(O3) O(2). The molecules are dimerized through the intermolecular hydrogen bonds at the carboxyl group in the crystal.

  • PDF

Synthesis and Structure of $\eta^4$-1-Functionally Substituted-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl Complexes of Irontricarbonyl. Crystal Structure of ($\eta^4$-exo-Cyclopentadienyldicarbonyliron-endo-1-Methyl-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl)Tricarbonyliron

  • Jinkook Kang;Jaejung Ko;Youngkun Kong;Chang Hwan Kim;Myong Euy Lee;Patrick J. Carroll
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.542-546
    • /
    • 1992
  • New silicon-monosubstituted (${\eta}^4$-2,3,4,5-tetraphenyl-1-silacyclopentadiene)transi tion metal complexes are described. The new (silole-transition metal complex)Fe$(CO)_3$ was obtained from the reaction of silole-tansition metal complex and Fe$(CO)_5$. We have determined the crystal structure of (${\eta}^4$-exo-cyclopentadienyldicarbonyliron-endo-1-meth yl-2,3,4,5-tetraphenyl-1-silacyclopentadienyl)tric arbonyliron by using graphitemonochromated Mo-$K_{\alpha}radiation. The compound was crystallized in the monoclinic space group $P2_1$/c with a = 8.925(1), b = 18.689(3), c = 19.930(3) ${\AA}$, and ${\beta}$ = 102.02$(1)^{\circ}$. The iron moiety CpFe$(CO)_2$ on silicon is in an axal position. The (silole-transition metal complex) Fe$(CO)_3$ was also prepared through the reaction of (${\eta}^4$-1-chloro-2,3,4,5-tetraphenylsilacyclopentadiene) Fe$(CO)_3$ and metal complex nucleophile. The structure configuration was studied by conventional spectroscopy.

Crystal Structure of Thiamin Tetrahydrofurfuryl Disulfide

  • Shin, Whan-Chul;Kim, Young-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.331-334
    • /
    • 1986
  • The crystal structure of thiamin tetrahydrofurfuryl disulfide, one of the ring-opened derivatives of thiamin, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 8.704 (1), b = 11.207 (2), c = 21.260 (3) ${\AA}$ and ${\beta}$ = 92.44 (2)$^{circ}$, space group P2$_{1}$/c and Z = 4. The structure was solved by direct methods and refined to R = 0.076 for 1252 observed reflections measured on a diffractometer. The molecule assumes a folded conformation in which the pyrimidine and the tetrahydrofurfuryl rings are on the same side of the ethylenic plane. The pyrimidinyl, N-formyl and ethylenic planes are mutually perpendicular to each other and the N(3)-C(4) bond retains a single bond character. The structure is stabilized by an intramolecular N(4'${\alpha})-H{\cdots}O(2{\alpha}$) hydrogen bond. The molecules are connected via N(4'${\alpha}$)-H{\cdots}(N3')$ and O(5${\gamma})-H{\cdots}(N1')$ hydrogen bonds, forming a two-dimensional hydrogen-bonding network. The tetrahydrofurfuryl ring is dynamically disordered. The overall conformation as well as the packing mode is very similar to that of thiamin propyl disulfide.

Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2- (R = 2-, 3-, and 4-Pyridinemethane) Clusters

  • Kim, Yu-Jin;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.48-54
    • /
    • 2012
  • The $[Fe_4S_4]^{2+}$ clusters with 2-, 3-, and 4-pyridinemethanethiolate (S2-Pic, S3-Pic, and S4-Pic, respectively) terminal ligands have been synthesized from the ligand substitution reaction of the $(^nBu_4N)_2[Fe_4S_4Cl_4]$ (I) cluster. The new $(^nBu_4N)_2[Fe_4S_4(SR)_4]$ (R = 2-Pic; II, 3-Pic; III, 4-Pic; IV) clusters were characterized by FTIR and UV-Vis spectroscopy. Cluster II was crystallized in the monoclinic space group C2/c with a = 24.530 (5) $\AA$, b = 24.636(4) $\AA$, c = 21.762(4) $\AA$, ${\beta}=103.253(3)^{\circ}$, and Z = 8. The X-ray structure of II showed two unique 2:2 site-differentiated $[Fe_4S_4]^{2+}$ clusters due to the bidentate-mode coordination by 2-pyridinemethanethiolate ligands. Cluster III was crystallized in the same monoclinic space group C2/c with a = 26.0740(18) $\AA$, b = 23.3195(16) $\AA$, c = 22.3720(15) $\AA$, ${\beta}=100.467(2)^{\circ}$, and Z = 8. The 3-pyridinemethanethiolate ligand of III was coordinated to the $[Fe_4S_4]^{2+}$ core as a terminal mode. Cluster IV with 4-pyridinemethanethiolate ligands was found to have a similar structure to the cluster III. Fully reversible $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ redox waves were observed from all three clusters by cyclic voltammetry measurement. The electrochemical potentials for the $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ transition decreased in the order of II, III and IV, and the reduction potential changes by the ligands were explained based on the structural differences among the complexes. The complex III was reacted with sulfonium salt of $[PhMeSCH_2-p-C_6H_4CN](BF_4)$ in MeCN to test possible radical-involving reaction as a functional model of the [$Fe_4S_4$]-SAM (S-adenosylmethionine) cofactor. However, the isolated reaction products of 3-pyridinemethanethiolate-p-cyanobenzylsulfide and thioanisole suggested that the reaction followed an ionic mechanism and the products formed from the terminal ligand attack to the sulfonium.

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • 대한화학회지
    • /
    • 제47권6호
    • /
    • pp.553-558
    • /
    • 2003
  • $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM)의 결정구조는 X-ray 분석기로 결정되었다. 그 결정은 monoclinic 계이며 ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4) ${\AA}$, ${\beta}$=101.47(3) 그리고 z=4의 결정파라미터를 갖는 sapce group 이 C2/c인 결정이다 $[Mo_6O{19}]^{2-}$ 음이온에서, Mo 원자는 팔면체의 여섯 개 모서리를 차지하며 각 Mo 원자는 여석개의 산소원자에 배위되어 찌그러진 팔면체 배위 기하학을 지닌다. Mo-Ot(말단기), Mo-Ob(연결된), 그리고Mo-Oc(중앙)의 평균거리는 각각 1.680 ${\AA}$, 1.931 ${\AA}$ 및 2.325 ${\AA}$ 이다. $[n-Bu_4N]^+$ 양이온에서 N원자는 약간 찌그러진 사면체 모형을 갖는다. 격자안에서 폭 넓은 C-H ${\cdots}$ O 수소결합이 있으며, 그것에 의하여 분자들을 연결하고 결정구조를 안정화 한다. 열분석에 의하여 제목의 열적분핸ㄴ 두개의 전이가 일어나며 356.0와 803.5 $^{\circ}$에서 각각 무게를 잃는다. 그리고 분해된 생성물은 $Mo_2O_2$로 추정된다. 따라서, 제목의 화합물은 높은 열적 안정성을 갖는다.

Crystal Structure Analysis of 6-Ethoxy-3-phenyl-5a,9a-dihydro-3H-chromen[4,3-c][1,2]oxazole-3a(4H)-carbonitrile

  • Malathy, P.;Sharmila, P.;Srinivasan, J.;Manickam, Bakthadoss;Aravindhan, S.
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.94-102
    • /
    • 2016
  • The crystal structure of the potential active 6-ethoxy-3-phenyl-5a,9a-dihydro-3H-chromen[4,3-c][1,2]oxazole-3a(4H)-carbonitrile ($C_{19}H_{15}N_2O_3$) has been determined from single crystal X-ray diffraction technique. The title compound crystallizes in the monoclinic space group C2/c with unit cell dimension a= 29.3026(9) ${\AA}$, b= 6.7695(2) ${\AA}$ and c= 19.7597(6) ${\AA}$ [${\alpha}= 90^{\circ}$, ${\beta}= 125.709(10)^{\circ}$ and ${\gamma}= 90^{\circ}$]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation method, the isoxazole and six membered pyran rings adopts envelope conformation. The crystal packing of the molecules is stabilized by the weak $C-H{\ldots}N$ hydrogen bond interaction.

Structure and Biological Activity of K(H2O)L (L = 5,7-Dihydroxy-6,4'-dimethoxyisoflavone-3'-sulfonate)

  • Guo, Ya-Ning;Zhang, Xue-Ling;Zhang, Zun-Ting
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1289-1292
    • /
    • 2006
  • Potassium(I) with 5,7-dihydroxy-6,4'-dimethoxyisoflavone-3'-sulfonate (L) assembles to K($H_2O$)L (L = 5,7-dihydroxy-6,4'-dimethoxyisoflavone-3'-sulfonate). It was characterized by single-crystal X-ray diffraction, element analysis, IR and $^1H$ NMR spectroscopy. It crystallizes in the monoclinic space group $P2_1$/n and reveals a seven-coordinate complex. Polyhedra potassium chains, C-H${\cdot}{\cdot}{\cdot}\pi$ and C-H${\cdot}{\cdot}{\cdot}$O and O-H${\cdot}{\cdot}{\cdot}$O hydrogen bonds lead K($H_2O$)L to a three-dimensional network structure. The biological activity of resistance to hypoxia was tested, and the results showed that the biological activity of resistance to hypoxia of K($H_2O$)L is as good as that of its precursor, irisolidone.