• Title/Summary/Keyword: Monoamine

Search Result 198, Processing Time 0.034 seconds

Protective Effect of R. palmatum on 1-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced Neurotoxicity in Mice (생쥐의 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-유도 신경독성에 대한 대황의 보호효과)

  • 이형철;김대근;조원준;황석연;이영구;김명동;전병훈
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • The protective efficacy of Rheum palmatum water extract on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism was studied in C57BL/6 mice. In order to demonstrate neuroprotective effect of R. palmatum extract, animals were administered intraperitoneally with the water extract (100 or 200 mg/kg/day) for 14 days, and MPTP (10 mg/kg/day) was injected subcutaneously into the mice for the first 6 consecutive days from the beginning 1 hr before R. palmatum extract treatment. All animals were measured the several neurobiochemical markers such as dopamine level and monoamine oxidase B (MAO-B) activity in various regions of brain. The treatment of mice with R. palmatum extract was confirmed recovery effect on MAO-B activity in the cerebellum and the cerebral cortex. R. palmatum extract was attenuated the MPTP-induced depletion of substantia nigra dopamine. The contents of MDA, a marker of lipid peroxidation, in brain tissues (cerebellum and cerebral cortex mitochondria) were decreased significantly by R. palmatum extract. These results suggest that R. palmatum water extract plays an effective role in attenuating MPTP-induced neurotoxicity in mice. This protective effect of R. palmatum might be estimated the result from the inhibitory activity on monoamine oxidase B and the enhancement of antioxidant activity.

Effects of Intravenous Administration of Taurocholic Acid on Hepatic Monoamine Oxidase A and B Activities in Rats with Choledocho-Caval Shunt

  • Do Jun-Young;Mun Kyo-Cheol;Kim You-Hee;Kwak Chun-Sik
    • Biomedical Science Letters
    • /
    • v.12 no.2
    • /
    • pp.91-97
    • /
    • 2006
  • The effects of intravenous administration of high concentration of taurocholic acid (TCA) on monoamine oxidase (MAO) A and B activities in rat liver mitochondria and microsomes were studied. These liver subcellular organelles and serum MAO activities were determined from the experimental rats with choledocho-caval shunt (CCS). The Michaelis-Menten constants in these hepatic enzymes were also measured. The activities of mitochondrial MAO A and B, and microsomal MAO B as well as their $V_{max}$ values were found to be decreased significantly in CCS plus TCA injected group then in the control group, such as CCS alone groups. However their $K_m$ values in the experimental groups did not vary. MAO of serum appeared in the CCS plus TCA injected groups only. The above results suggest that TCA represses biosynthesis of the MAO in the liver. The MAO of serum is believed to be caused by the increment of membrane permeability of hepatocytes upon TCA mediated liver cell necrosis.

  • PDF

Inhibition of monoamine oxidase A and B by demethoxycurcumin and bisdemethoxycurcumin

  • Baek, Seung Cheol;Choi, Bomee;Nam, Sang-Jip;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.187-190
    • /
    • 2018
  • Two curcumin derivatives, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), isolated from Curcuma longa were analyzed for their inhibitory activities against two isoforms of monoamine oxidase (MAO), which is involved in the catalysis of neurotransmitting monoamines. In the study, DMC and BDMC potently inhibited human MAO-B, with $IC_{50}$ values of 2.45 and $2.59{\mu}M$, respectively, and both compounds showed effective inhibitory activities against human MAO-A, with $IC_{50}$ values of 3.24 and $3.09{\mu}M$, respectively. The inhibitory activities of the two compounds were higher than those of curcumin. The removal of the methoxy or dimethoxy groups in curcumin might increase the inhibitory activities against human MAO-A and MAO-B. The inhibited activities were recovered to almost the values of the reversible references in the dialysis experiments with DMC and BDMC. DMC and BDMC showed competitive inhibition for MAO-A and MAO-B, respectively, with $K_i$ values of 0.91 and $0.80{\mu}M$, respectively. These results suggest that the two curcumin derivatives may be useful or lead compounds in the treatment of related disorders as potent reversible MAO inhibitors.

Inhibition of Monoamine Oxidase by Anithiactins from Streptomyces sp.

  • Lee, Hyun Woo;Jung, Won Kyeong;Kim, Hee Jung;Jeong, Yu Seok;Nam, Sang-Jip;Kang, Heonjoong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1425-1428
    • /
    • 2015
  • Monoamine oxidase (MAO) is found in most cell types and catalyzes the oxidation of monoamines. Three anithiactins (A-C, modified 2-phenylthiazoles) isolated from Streptomyces sp. were tested for inhibitory activity of two isoforms, MAO-A and MAO-B. Anithiactin A was effective and selective for the inhibition of MAO-A, with an IC50 value of 13.0 μM; however, it was not effective for the inhibition of MAO-B. Anithiactins B and C were weaker inhibitors for MAO-A and MAO-B. Anithiactin A was a reversible and competitive inhibitor for MAO-A with a Ki value of 1.84 μM. The hydrophobic methyl substituent in anithiactin A may play an important role in the inhibition of MAO-A. It is suggested that anithiactin A is a selective reversible inhibitor for MAO-A, with moderate potency, and can be considered a new potential lead compound for further development of novel reversible inhibitors for MAO-A.

Studies about Monoamine Oxidase Inhibitory Activities of Korean Green Tea (Teae sinensis L.) Harvested from Different Time and Location

  • Choi, You Jin;Chong, Han-Soo;Kim, Young-Kyoon;Hwang, Keum Hee
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.281-285
    • /
    • 2013
  • This study was designed to investigate the nervous sedative effects of green tea. The sedative effect was evaluated by examination of Monoamine oxidases (MAOs) inhibitory activity in vitro in the brain and liver of rat fed on green tea cultivated and harvested from the different regions and periods. It showed that methanol extracts of green tea inhibited significantly the brain MAO-A activity. Especially late harvested green tea extracts showed potential inhibitory activity. The liver MAO-B activity was also inhibited by all of the green tea extracts with strong intensity. This study confirmed that major compounds of green tea such as catechin, epigallocatechin-3-gallate (EGCG) and L-theanine, which were well known for the main bioactive components in the tea plants, were not associated with the MAO inhibitory activities of green tea. These results suggested that a MAO inhibition activity comes from other minor tea components we have to search in the future.

Monoamine Oxidase Inhibitory Coumarins from the Aerial Parts of Dictamnus albus

  • Jeong, Seon-Hwa;Han, Xiang Hua;Hong, Seong-Su;Hwang, Ji-Sang;Hwang, Ji-Hye;Lee, Dong-Ho;Lee, Myung-Koo;Ro,, Jai-Seup;Hwang, Bang-Yeon
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1119-1124
    • /
    • 2006
  • The methanol extract from the aerial parts of Dictamnus albus was active in inhibiting monoamine oxidase (MAO) from the mouse brain. Activity-guided fractionation led to the isolation of four known coumarins, 7-(6'R-hydroxy-3', 7'-dimethyl-2'E, 7'-octadienyloxy) coumarin (1), auraptene (2), umbelliferone (3), and xanthotoxin (4), as active compounds along with an inactive alkaloid, skimmianine (5). Compounds 1 and 2 inhibited MAO activity in a concentration-dependent manner with $IC_{50}$ values of 0.7 and $1.7\;{\mu}M$, respectively. Compounds 1 and 2 showed a slight and potently selective inhibitory effect against MAO-B ($IC_{50}\;0.5\;and\;0.6\;{\mu}M,\;respectively$) compared to MAO-A ($IC_{50}\;1.3\;and\;34.6\;{\mu}M,\;respectively$). According to kinetic analyses derived by Lineweaver-Burk reciprocal plots, compounds 1 and 2 exhibited a competitive inhibition to MAO-B.

Ginsenoside Rb1 Modulates Level of Monoamine Neurotransmitters in Mice Frontal Cortex and Cerebellum in Response to Immobilization Stress

  • Lee, Sang-Hee;Hur, Jin-Young;Lee, Eun-Joo H.;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.482-486
    • /
    • 2012
  • Cerebral monoamines play important roles as neurotransmitters that are associated with various stressful stimuli. Some components such as ginsenosides (triterpenoidal glycosides derived from the Ginseng Radix) may interact with monoamine systems. The aim of this study was to determine whether ginsenoside Rb1 can modulate levels of the monoamines such as dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NE), epinephrine (EP), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydorxytryptamine (5-HT), 5-hydroxindole-3-acetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP) in mice frontal cortex and cerebellum in response to immobilization stress. Mice were treated with ginsenoside Rb1 (10 mg/kg, oral) before a single 30 min immobilization stress. Acute immobilization stress resulted in elevation of monoamine levels in frontal cortex and cerebellum. Pretreatment with ginsenoside Rb1 attenuated the stress-induced changes in the levels of monoamines in each region. The present findings showed the anti-stress potential of ginsenoside Rb1 in relation to regulation effects on the cerebral monoaminergic systems. Therefore, the ginsenoside Rb1 may be a useful candidate for treating several brain symptoms related with stress.

Effects of Herbal Medicines on Monoamine Oxiclase Activity (II) (수종의 천연물이 모노아민 옥시다제 활성에 미치는 영향 (제2보))

  • Kim, Young-Ho;Lee, Sang-Seon;Bae, Ki-Hwan;Kim, Hack-Seang;Lee, Myung-Koo
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.634-638
    • /
    • 1998
  • The effects of MeOH extracts from 88 herbal medicines on monoamine oxidase (MAO) acitivity were investigated. MAO was purified from mouse brain and its activity was determined by fluorospectrophotometer using kynuramine as a substrate. The $K_m\;and\;V_{max}$ values (n=4) of MAO were $78.2{\pm}4.0\;{\mu}M$ and $0.65{\pm}0.05$ nmol/min/mg protein, respectively. Four MeOH extracts from Melilotus sauvelolens, Eupatorium lindleyanum Bupleurum longiradiatum and Sorbaria sirbiforia showed a strong inhibitory effect with less than $100{\mu}g/ml$ in their $IC_{50}$ values on MAO activity. Six MeOH extracts including Agastache rugosa showed a mild inhibitory effect with 100~200${\mu}$g/ml in their $IC_{50}$ values. Twenty-two MeOH extracts including Melandryum seoulense exhibited a week inhibition of MAO activity with 200~300${\mu}$g/ml in their $IC_{50}$ values.

  • PDF

Effect of Cigarette Smoke Exposure on MPTP-Induced Neurotoxicity in Mice (흡연이 MPTP에 의해 유발되는 신경독성에 미치는 영향)

  • Heung-Bin Lim;Hyung-Ok Sohn;Young-Gu Lee;Dong-Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Effect of cigarette smoke exposure on 1-methyl-4-phpnyl-1,2,3,6-tetrahydro-pyidine (Mm)-induced neurotoxicity was investigated in C57BL6 mice. Cigarette smoke exposure of mice to the mainstream smoke generated from 15 cigarettes for 10 mins per day, 5 days per week, for fi weeks, effectively attenuated the decline both in the level of striatal dopamine and the number of brrosine hydros:ylase-positive ceils in the brain caused by MPTP treahent. Exposure to cigarette smoke significantly decreased monoamine oxidate B activity in the cerebral cortex and cerebellum. The activity of brain antioxidant enzymes such as catalase, glutathione peroxidase, and Cu, Zn-superoxide dismutase, was not changed by cigarette smoke exposure or MPTP treatment. Sulfhydryl compounds content in all brain regions except for the striatum was uniquely increased by MPTP treatment, however, such an effect of MPTP was not observed in mice exposed to cigarette smoke. These results suggest that cigarette smoke exposure inhibits MPTP-induced neurotoxicity without influencing free radical metabolism in the brain of mice. This protective effect of cigarette smoke seems to be closely related with the decreased activity of brain monoamine oxidase H. Key words : cigarette smoke exposure, dopamine, monoamine oxidase B, antioxidant enzywles, MPTP.

  • PDF

Potent Selective Inhibition of Monoamine Oxidase A by Alternariol Monomethyl Ether Isolated from Alternaria brassicae

  • Lee, Hyun Woo;Kim, Yeon Ji;Nam, Sang-Jip;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.316-320
    • /
    • 2017
  • Alternariol monomethyl ether (AME), a dibenzopyrone derivative, was isolated from Alternaria brassicae along with altertoxin II (ATX-II). The compounds were tested for the inhibitory activity of monoamine oxidase (MAO), which catalyzes neurotransmitting monoamines. AME was found to be a highly potent and selective inhibitor of human MAO-A with an $IC_{50}$ value of $1.71{\mu}M$; however, it was found to be ineffective for MAO-B inhibition. ATX-II was not effective for the inhibition of either MAO-A or MAO-B. The inhibition of MAO-A using AME was apparently instantaneous. MAO-A activity was almost completely recovered after the dilution of the inhibited enzyme with an excess amount of AME, suggesting AME is a reversible inhibitor. AME showed mixed inhibition for MAO-A in Lineweaver-Burk plots with a $K_i$ value of $0.34{\mu}M$. The findings of this study suggest that microbial metabolites and dibenzopyrone could be potent MAO inhibitors. In addition, AME could be a useful lead compound for developing reversible MAO-A inhibitors to treat depression, Parkinson's disease, and Alzheimer's disease.