• Title/Summary/Keyword: Mono-layer landfill final cover system

Search Result 5, Processing Time 0.018 seconds

The Evaluation on In-Situ Adaptability of Mono-layer Landfill Final Cover System (단층형 매립지 최종복토시스템의 현장 적용성 평가)

  • Yu, Chan;Yun, Sung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.73-80
    • /
    • 2006
  • The mono-layer cover system is composed of soils only as a filling material and various plants are planted on the surface to control the water balance in the cover system. In this paper, the mono-layer cover system was considered as an alternative landfill final cover system and developed a model that could utilize industrial by-product (especially, coal ash & phosphogypsum) as additive filling materials. The mixture of granite soil, coal ash, and phosphogypsum was placed as a cover material in a box constructed with cement. Laboratory tests were carried out to investigate the environmental effect on the utilization of coal ash & phosphogypsum and to determine the mxing ratio of each materials. In the leaching test, all materials showed lower heavy metal concentration than the threshold values of regulation. The optimum mixing ratio of materials which was applied to field model test was determined to soil (4) : coal ash (1) : phosphogypsum (1) on the volume base. Field model tests were continued from February to July, 2004 in the soil box that was constructed with cement block. It was verified that coal ash and phospogypsum mixed with soil was to be safe environmentally and the water balance of mono-layer cover system was reasonable.

Evaluation on the effect of Coal-ash as Landfill Cover Material of Mono-Layer Cover System through the Field Scale Test (현장 실험을 통한 단층형 매립복토시스템의 복토재로서 석탄회의 효과 검토)

  • Yu, Chan;Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1018-1031
    • /
    • 2010
  • In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. Among the cases tested, consequently, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability.

  • PDF

Evaluation on Feasibility of Industrial By-products for Development of Mono-Layer Landfill Cover System (산업부산물을 이용한 단층형 매립지 복토시스템 개발을 위한 적용 타당성 평가)

  • Kim, Soon-Oh;Kim, Pil-Joo;Yu, Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1075-1086
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to apply mono-layer cover system for non-sanitary landfill sites, 6 different industrial by-products, such as construction waste, bottom ash, gypsum, blast furnace and steel manufacture slags, and stone powder sludge, were evaluated. Various physicochemical and hydrodynamic properties of the industrial byproducts were investigated. The environmental safety was monitored using batch and long-term leaching tests as well. In addition, the flexibility of plants was observed by cultivating them in the industrial by-products. The results for physicochemical properties indicate that most of the materials considered appeared to be suitable for landfill cover. Particularly, the concentration levels of hazardous elements regulated by the Korean Law for Waste Management did not exceed the regulatory limits in all target materials. In addition, the concentrations of regulated elements for the Korean Soil Conservation Law were examined below the regulatory limits in most of materials considered, except for the stone powder sludge. The results of batch and long-term experiments showed bottom ash and construction waste were the most suitable materials for landfill cover among the industrial by-products considered. The results of plant studies indicate that the bottom ash among industrial by-products considered was most effective in developing vegetation on landfill site, showing fast germination and large growth index. At the final covering system made of mixture of soil and bottom ash, the optimum application rate of farmyard manure was observed to be 40-50 Mg/ha.

Evaluation on the Effect of Coal-ash as Landfill Cover Material of Mono-Layer Cover System through the Field Scale Test (현장 실험을 통한 단층형 매립복토시스템의 복토재로서 석탄회의 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Pil-Joo;Kim, Soon-Oh;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.81-91
    • /
    • 2010
  • In order to investigate the applicability and suitability of the coal ash (bottom ash) to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter ($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to february, 2008. Among the cases tested, consequently, the case containing the mixture of bottom ash and loamy soil was most effective in plant growth and water retention ability.

Variation of Hydrological Characteristics of Soils Mixed with Industrial By-products by Pilot-Test (현장 Pilot실험을 통한 산업부산물 혼합토의 수리학적 특성 변화)

  • Yu, Chan;Yoon, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1655-1665
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. As a result, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability.

  • PDF