• Title/Summary/Keyword: Mono-Filament Fiber

Search Result 11, Processing Time 0.025 seconds

Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil- (보강 혼합토의 역학적 특성(II) -섬유 혼합토-)

  • Song, Chang Seob;Lim, Seong Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

A Study on the Crack Characteristics of the Syntetic Fiber Reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.59-65
    • /
    • 1999
  • This study has been performed to confirm the three dimensional effect of the crack reduction and the restrained effect of crack growth for the synthetic fiber reinforced soil. Two types of polyrpropylene fiber and low plastic clay(CL) were used for the test. And the test variable were fiber length and so on. The results of the study were summarized as follows ; 1) The mixing of synthetic fiber was effective in reducing crack growth due to adhesion between soil partlcles and synthetic fiber.l Especially initlal crack was delayed, as compared with the pure soil, for about 1 day in case of mono filament synthetic fiber and for about 1 or 2 days in case of fibrillated syntetic fiber. 2) As the content and length of synthetic fiber were increased , the effect of crack reduction was increased. It was found that 0.5% fibrillated synthetic fiber with 40mm length reinforced soil had about 3 times more effective than natural soils. 3) In case of the same fiber content and fiber length, the fibrillated synthetic fiber has nmore effective than the mono filament synthetic fiber for crack reduction.

  • PDF

A Study on the Durability and Strength Properties of Incorporating Polypropylene Fiber (합성섬유를 혼입한 콘크리트의 강도 및 내구특성)

  • Jung, Young-Hwa;Lee, Ju-Hyung;Hong, Chang-Woo;Lee, Jung Ho
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.371-378
    • /
    • 1998
  • Concrete structures has been deteriorated by poor environment. This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Therefore, the research of durability must be executed for application of Polypropylene fiber reinforced concrete real structures. Concrete durability properties incorporating Polypropylene fiber was performed with the variable of Fiber contents, Fiber type and Target strength, specimens were made and subjected to durability and strength tests. The results show that strength of concrete is increased the Fiber content increase, Mono-Filament fiber and Polypropylene fiber reinforced concrete makes improved durability properties.

  • PDF

A study on the crack characteristics of the Synthetic Fiber reinforced Soil (섬유 보강토의 균열 특성 연구)

  • 송창섭;이신호;반창현;인현식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.431-437
    • /
    • 1998
  • This study was performed to ascertain the three-dimensional effect of the crack reduction and the restrained effect of crack growth, and to yield a suitable mixing ratio of the synthetic fiber reinforced soil. The results of the study are as follows ; 1) The synthetic fiber has the resisting force for crack because of the adhesion due to the attraction of soil particles. 2) As the synthetic fiber length and the mixing ratio are increased, mono filament synthetic fiber reinforced soil is increased the effects of crack reduction and the restraint of crack growth. 3) The fibrillated synthetic fiber is more effective than mono filament synthetic fiber for crack. 4) A suitable mixing ratio of synthetic fiber reinforced soil is 0.5% of the fibrillated synthetic fiber.

  • PDF

Characteristics of Compaction and Stregth for Synthetic Fiber Reinforced Soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.93-98
    • /
    • 1999
  • The results of an experimental investigation on the characteristics of compaction and compressive strength of polypropylene fiber reinforced soil are presented in this paper. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$dmax (maximum dry unit weight), with four different contents (i.e., 0.1%, 0.3%, 0.5% and 1.0% weights ) of mono-filament and fibrillated polypropylene fibers. From the compaction test results, it is found that OMC increased with the contents ratio of fiber, but ${\gamma}$dmax decreased. It means that the improvement of the workability and the reduction of the weight of embankment structures by the asddtion of the polypropylene fiber. And, from the compression test results, it is found that the additon of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil is more effective than the mono-filament polypropylene fiber reinforced soil.

  • PDF

Characteristics of compaction and strength for synthetic fiber reinforcement soils (섬유 보강토의 다짐 및 강도 특성)

  • 송창섭;장병욱;이용범;임성윤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.444-448
    • /
    • 1998
  • This paper presents the results of an experimental investigation on the compaction and compressive strength of polypropylene fiber reinforced soils. This study has been performed to obtain the physical properties of PFRS(polypropylene fiber reinforced soil) such as strain-stress relationships, OMC(optimum moisture contents) and ${\gamma}$$_{dmax}$ (maximum dry unit weight), with four different concentrations(i.e., 0.1%, 0.3%, 0.5% and 1.0% weights) of mono-filament and fibrillated polypropylene fibers. The test results indicate an appreciable increase in strength due to addition of fibers. OMC is increased with the concentration ratio of fiber, but ${\gamma}$$_{dmax}$ is decreased. From the viewpoint of strength, the fibrillated polypropylene fiber soil is more effective than the mono-filament polypropylene fiber soil.oil.

  • PDF

The Experimental Study on Engineering Properties of Fiber - Reinforced Soil (섬유혼합 보강토의 공학적 특성에 관한 실험연구)

  • 조덕삼;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • The purpose of this study is to investigate the effects of fiber on engineering properties of Fiber-Reinforced Soil. Engineering properties of soil reinforced with discrete randomly oriented inclusion depend on soil density, particle size, grading, fiber length, tensile strength and stiffness of fiber, mixing ration of fiber, confining stress, etc.. in this paper, the influence of fiber shape, fiber length, fiber diameter, fiber content, cement content and curing duration on engineering characteristics(compaction, shear & permeability) were evaluated for typical soils produced from construction works through uniaxial compression tests and triaxial compression tests. From the experimental results, it was also investigated if there is an optimal range of fiber lengths and fiber contents for the tested soils and tested mono-filament fibers.

  • PDF

Settlement Characteristics of Short-fiber Reinforced Soil under Simulated Railroad Loading (열차모의하중에 대한 단섬유 보강토체의 침하특성)

  • 박영곤;김정기;김현기;황선근
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.596-600
    • /
    • 2002
  • To analyze the settlement characteristics of short-fiber reinforced soil(SFRS), which will be used as a new backfill material of reinforced retaining wall, under simulated railroad loading, a series of tests with loading condition of 5 Hz frequency and 500,000 cycles were performed. The materials used for tests are soils with SM or ML type, and polypropylene short-fibers with mono-filament(PPM) or fibrillated type(PPF). From the tests, average plastic settlement is low at PPF38(0.3%)(abbreviation of PPF with 38mm length and mixing ratio 0.3%), PPF38(0.5%), PPM60(0.2%) for SFRS using SM soil and at PPF38(0.3%), PPF60(0.2%) for SFRS using ML soil. Elastic settlement is low at PPM60(0.2%) for SFRS using SM soil and at PPM60(0.5%) for SFRS using ML soil.

  • PDF

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters (용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구)

  • Jeung, Woo Chang;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.