Browse > Article
http://dx.doi.org/10.5764/TCF.2022.34.3.197

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters  

Jeung, Woo Chang (Industrial Information Education Team, Korea Textile Deveropment Institute)
Kim, Sam Soo (Department of Fiber System Engineering, Yeungnam University)
Lee, Sang Oh (Department of Clothing and Fashion, Yeungnam University)
Lee, Jaewoong (Department of Fiber System Engineering, Yeungnam University)
Publication Information
Textile Coloration and Finishing / v.34, no.3, 2022 , pp. 197-206 More about this Journal
Abstract
The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.
Keywords
polylactic acid; melt spinning; PLA fiber; spinning condition; spinning analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. J. Pan, Z. I. Lin, C. W. Lou, C. L. Huang, M. C. Lee, J. M. Liao, and J. H. Lin, Polylactic Acid/Carbon Fiber Composites: Effects of Polylactic Acid-g-maleic Anhydride on Mechanical Properties, Thermal Behavior, Surface Compa tibility, and Electrical Characteristics, Journal of Composite Materials, 52(3), 405(2018).
2 C. F. Kuan, H. C. Kuan, C. C. M. Ma, and C. H. Chen, Mechanical and Electrical Properties of Multi-wall Carbon Nanotube/poly(lactic acid) Composites, Journal of Physics and Chemistry of Solids, 69(5-6), 1395(2008).
3 K. Somord, O. Suwantong, N. Tawichai, T. Peijs, and N. Soykeabkaew, Self-reinforced Poly(lactic acid) Nanocom posites of High Toughness, Polymer, 103, 347(2016).
4 T. Takayama, Y. Daigaku, H. Ito, and H. Takamori, Mechanical Properties of Bio-absorbable PLA/PGA Fiber-reinforced Composites, Journal of Mechanical Science and Technology, 28(10), 4151(2014).
5 Y. Jung, S. S. Kim, Y. H. Kim, S. H. Kim, B. S. Kim, S. Kim, C. Y. Choi, and S. H. Kim, A Poly(lactic acid)/calcium Metaphosphate Composite for Bone Tissue Engineering, Biomaterials, 26(32), 6314(2005).
6 C. B. Danoux, D. Barbieri, H. Yuan, J. D. de Bruijn, C. A. van Blitterswijk, and P. Habibovic, In vitro and In vivo Bioactivity Assessmen of a Polylactic Acid/hydroxyapatite Composite for Bone Regeneration, Biomatter, 4, e27664 (2014).
7 X. Xu, X. Chen, A. Liu, Z. Hong, and X. Jing, Electrospun Poly(L-lactide)-grafted Hydroxyapatite/ Poly(L-lactide) Nanoco mposite Fiber, European Polymer Journal, 43(8), 3187(2007).
8 M. Supova, Problem of Hydroxyapatite Dispersion in Polymer Matrices: A Review, Journal of Materials Science Materials in Medicine, 20(6), 1201(2009).
9 S. Petisco-Ferrero, L. P. Alvarez, L. Ruiz-Rubio, J. L. V. Vilela, and J. R. Sarasua, Plasma Poly(acrylic acid) Compatibilized Hydroxyapatite-polylactide Biocomposites for Their Use as Body-absorbable Osteosynthesis Devices, Composites Science and Technology, 161, 66(2018)
10 Y. Du, T. Wu, N. Yan, M. T. Kortschot, and R. Farnood, Fabrication and Characterization of Fully Biodegradable Natural Fiber-reinforced Poly(lactic acid) Composites, Composites : Part B, 56, 717(2014).
11 Z. Hong, P. Zhang, C. He, X. Qiu, A. Liu, L. Chen, X. Chen, and X. Jing, Nano-composite of Poly(l-lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility, Biomaterials, 26(32), 6296(2005).
12 M. J. John, R. Anandjiwala, K. Oksman, and A. P. Mathew, Melt-spun Polylactic Acid Fibers: Effect of Cellulose Nano whiskers on Processing and Properties, Journal of Applied Polymer Science, 127(1), 274(2013).
13 H. S. Ko, S. W. Lee, D. Y. Lee, and J. Y. Jho, Mechanical Properties and Bioactivity of Poly(Lactic Acid) Composites Containing Poly(Glycolic Acid) Fiber and Hydroxyapatite Particles, Nanomaterials, 11(1), 249(2021).
14 H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites, Composites : Part B, 42(4), 856(2011).
15 A. M. Ali, The Impact of the Thermal Annealing Conditions on the Structural Properties of Polylactic Acid Fibers, Micro scopy Research and Technique, 85(3), 875(2022).
16 K. Hamad, M. Kaseem, H. W. Yang, F. Deri, and Y. G. Ko, Properties and Medical Applications of Polylactic Acid: A Review, eXPRESS Polymer Letters, 9(5), 435(2015).
17 G. Li, M. Zhao, F. Xu, B. Yang, X. Li, X. Meng, L. Teng, F. Sun, and Y. Li, Synthesis and Biological Application of Polylactic Acid, Molecules, 25(21), 5023(2020).
18 B. Gupta, N. Revagade, and J. Hilborn, Poly(lactic acid) Fiber: An Overview, Progress in Polymer Science, 32(4), 455(2007).
19 M. S. Singhvi, S. S. Zinjarde, and D. V. Gokhale, Polylactic Acid: Synthesis and Biomedical Applications, Journal of Applied Microbiology, 127(6), 1612(2019).
20 X. Pang, X. Zhuang, Z. Tang, and X. Chen, Polylactic Acid (PLA): Research, Development and Industrialization, Biotech nology Journal, 5(11), 1125(2010).
21 L. Ranakoti, B. Gangil, S. K. Mishra, T. Singh, S. Sharma, R. A. Ilyas, and S. El-Khatib, Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites, Materials, 15(12), 4312(2022).
22 Y. Yang, M. Zhang, Z. Ju, P. Y. Tam, T. Hua, M. W. Younas, H. Kamrul, and H. Hu, Poly(lactic acid) Fibers, Yarns and Fabrics: Manufacturing, Properties and Appli cations, Textile Research Journal, 91(13-14), 1641(2021).