• Title/Summary/Keyword: Monitoring channel

Search Result 459, Processing Time 0.03 seconds

Performance on Channel Multiple Access for the OBP Satellite (OBP(On-Board Processing)위성의 채널 다중 접속 방식에 대한 성능 연구)

  • 이정렬;김덕년
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.5-8
    • /
    • 2000
  • In this paper, The new scheme for Demand Assigned Multiple Access(DAMA) system is proposed. To focus on the onboard processor's specific monitoring of output port of the downlink, we found the Throughput and Blocking probability by the request traffic(λ) and channel's departure probability(Ρ).

  • PDF

Development of an EEG Software for Two-Channel Cerebral Function Monitoring System (2채널 뇌기능 감시 시스템을 위한 뇌파 소프트웨어의 개발)

  • Kim, Dong-Jun;Yu, Seon-Guk;Kim, Seon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 1999
  • This paper describes an EEG(electroencephalogram) software for two-channel cerebral function monitoring system to detect the cerebral ischemia. In the software, two-channel bipolar analog EEG signals are digitized and from the signals various EEG parameters are extracted and displayed on a monitor in real-time. Digitized EEG signal is transformed by FFT(Fast Fourier transform) and represented as CSA(compressed spectral array) and DSA(density spectral array). Additional 5 parameters, such as alpha ratio, percent delta, spectral edge frequency, total power, and difference in total power, are estimated using the FFT spectra. All of these are effectively merged in a monitor and displayed in real-time. Through animal experiments and clinical trials on men, the software is modified and enhanced. Since the software provides raw EEG, CSA, DSA, simultaneously with additional 5 parameters in a monitor, it is possible to observe patients multilaterally. For easy comparison of patient's status, reference patterns of CSA, DSA can be captured and displayed on top of the monitor. And user can mark events of surgical operation and patient's conditions on the software, this allow him jump to the points of events directly, when reviewing the recorded EEG file afterwards. Other functions, such as forward/backward jump, gain control, file management are equipped and these are operated by simple mouse click. Clinical tests in a university hospital show that the software responds accurately according to the conditions of patients and medical doctors can use the software easily.

  • PDF

The Analysis on the Upsteam band Signal in the HFC Access Network (HFC 가입자망 상향대역 신호분석에 관한 연구)

  • 장문종;김선익;이진기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.142-144
    • /
    • 2004
  • To provide more qualified data service on the HFC(Hybrid-Fiber Coaxial) access network, the channel characteristics of upstream transmission band should be carefully investigated and analysed. It will be easier to do network management if the monitoring system for noise measurement in the network is available, In this paper, noise analysis method and the frequency selection method in the upstream band for duplex transmission are suggested. And, Data aquisition device for the signal measurement Is implemented. With this network monitoring system, field test and the result from the collected data are described.

  • PDF

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Two-plane Hull Girder Stress Monitoring System for Container Ship

  • Choi Jae-Woong;Kang Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.17-25
    • /
    • 2004
  • Hull girder stress monitoring system for container ship uses four long-base-strain-gages at mid-ship to monitor the resultant stresses and the applied moment components of horizontal, vertical and torsional moments. The bending moments are estimated by using the conventional strain-moment relations, however, the torsional moment related to the warping strain requires the assumption of the shape of torsional moments over the hull girder. Though this shape could be a sine function with an adequate period, it largely depends upon certain empirical formulas. This paper introduces additional four long-base-strain-gages at mid-ship to derive the longitudinal slope of the warping strain because this slope is directly related to the torsional moment by Bi-moment concept. An open-channel-type cantilever beam has been selected as a simplified model for container ship and the result has proved that the suggested concepts can estimate the torsional component accurately. Finally this method can become reliable technique to derive all external moments in hull girder stress monitoring system for container ships.

Distributed Decision-Making in Wireless Sensor Networks for Online Structural Health Monitoring

  • Ling, Qing;Tian, Zhi;Li, Yue
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.350-358
    • /
    • 2009
  • In a wireless sensor network (WSN) setting, this paper presents a distributed decision-making framework and illustrates its application in an online structural health monitoring (SHM) system. The objective is to recover a damage severity vector, which identifies, localizes, and quantifies damages in a structure, via distributive and collaborative decision-making among wireless sensors. Observing the fact that damages are generally scarce in a structure, this paper develops a nonlinear 0-norm minimization formulation to recover the sparse damage severity vector, then relaxes it to a linear and distributively tractable one. An optimal algorithm based on the alternating direction method of multipliers (ADMM) and a heuristic distributed linear programming (DLP) algorithm are proposed to estimate the damage severity vector distributively. By limiting sensors to exchange information among neighboring sensors, the distributed decision-making algorithms reduce communication costs, thus alleviate the channel interference and prolong the network lifetime. Simulation results in monitoring a steel frame structure prove the effectiveness of the proposed algorithms.

Implementation of Gait Pattern Monitoring System Using FSR(Force Sensitive Resistor) Sensor (압력 센서를 이용한 보행 패턴 모니터링 시스템 구현)

  • Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2021
  • Recently, technologies for internet of things have been rapidly advanced with development of network. Also interest in smart healthcare that informs about motion information of users has been growing. In this paper, a system that is monitoring the weight on both feet by using aduino and FSR(Force Sensitive Resistor) Sensor is implemented. A 4-channel sensor driver module was implemented to measure a more accurate weight value. It is monitoring the weight on both feet by the using an application for either your PC or mobile device. Mobile applications can contribute to reducing human damage by sending messages along with location in emergency situations, such as injuries caused by falls during outdoor activities.

Hardware Channel Decoder for Holographic WORM Storage (홀로그래픽 WORM의 하드웨어 채널 디코더)

  • Hwang, Eui-Seok;Yoon, Pil-Sang;Kim, Hak-Sun;Park, Joo-Youn
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • In this paper, the channel decoder promising reliable data retrieving in noisy holographic channel has been developed for holographic WORM(write once read many) system. It covers various DSP(digital signal processing) blocks, such as align mark detector, adaptive channel equalizer, modulation decoder and ECC(error correction code) decoder. The specific schemes of DSP are designed to reduce the effect of noises in holographic WORM(H-WORM) system, particularly in prototype of DAEWOO electronics(DEPROTO). For real time data retrieving, the channel decoder is redesigned for FPGA(field programmable gate array) based hardware, where DSP blocks calculate in parallel sense with memory buffers between blocks and controllers for driving peripherals of FPGA. As an input source of the experiments, MPEG2 TS(transport stream) data was used and recorded to DEPROTO system. During retrieving, the CCD(charge coupled device), capturing device of DEPROTO, detects retrieved images and transmits signals of them to the FPGA of hardware channel decoder. Finally, the output data stream of the channel decoder was transferred to the MPEG decoding board for monitoring video signals. The experimental results showed the error corrected BER(bit error rate) of less than $10^{-9}$, from the raw BER of DEPROTO, about $10^{-3}$. With the developed hardware channel decoder, the real-time video demonstration was possible during the experiments. The operating clock of the FPGA was 60 MHz, of which speed was capable of decoding up to 120 mega channel bits per sec.

  • PDF

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

A result of prolonged monitoring underwater sound speed in the center of the Yellow Sea (황해 중앙부에서 수중음속의 장기간 모니터링 결과)

  • Kil, Bum-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • A time-series variation of temperature, salinity, and underwater sound speed was analyzed using an Array for Real-time Geostrophic Oceanography (ARGO) float which autonomously collects temperature and salinity for about 10month with 2 days cycle among 12 floats in the center of the Yellow Sea. As a result, the underwater sound channel appeared below the thermocline as the surface sound channel, which is dominant in the winter season, reduced in April. Besides, for a certain time in the spring season, the sound ray reflected the sea surface frequently due to the short-term temperature inversion effect. Based on the case of successful observation of ARGO float in the shallow water, using prolonged monitoring unmanned platform may contribute to predicting sound transmission loss if the temperature inversion and sound channel including background environment focusing are investigated in the center of the Yellow Sea.