• Title/Summary/Keyword: Monitoring and evaluation

Search Result 2,573, Processing Time 0.04 seconds

Characteristics Monitoring Technique of HILS System Loop (HILS 시스템 루프 특성 모니터링 기법)

  • Hong, Jeong-Woon;Kim, Young-Joo;Kwak, Byung-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.566-568
    • /
    • 1999
  • HILS is widely used in the test and evaluation of complex control system. This paper describes the structure of HILS and the control loop performance monitoring of HILS system Distal path delay and FMS(Flight Motion Simulator) dynamics were estimated and output of the estimated model were compared with real FMS output. The monitoring system can be used for analyzing the result of HILS.

  • PDF

Design of Compression Pants for Wireless sEMG Monitoring using e-textile (E-textile을 이용한 무선 sEMG 모니터링 컴프레션 바지 설계)

  • Heejae Jin;Hyojeong Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.1
    • /
    • pp.94-107
    • /
    • 2024
  • This study developed compression pants with excellent wearability and signal quality by approaching the design of wireless sEMG monitoring pants from the perspective of technical design, including the evaluation of wearability and the stable wireless transmission of signals through electrode and circuit design, and using e-textiles. An electrode, sewn with silver thread and a circuit stitched in a zigzag pattern using stainless steel wire, were applied. Additionally, polyurethane sealing tape was used to enhance adherence to the skin and reduce electrical resistance. Conductive snaps completed the design, allowing attachment and detachment to the bio-signal acquisition mainboard. Through the subjects' evaluation, it was determined that the final pants were applied with a pattern reduction rate of 25% to provide superior comfort according to different body parts while also minimizing skin irritation around the thigh circuit. The final pants for wireless sEMG monitoring, which demonstrated stable transmission of wireless measurements, was positively evaluated in terms of cognitive acceptability. This study is significant in that it achieved an optimal design by considering both technical aspects and the electrical characteristics of bio-signal monitoring garments, as well as the wearer's perception when designing smart wear.

Multipoint Process Monitoring System Based on a Near Infrared Ray(NIR) Acousto-Optic Tunable Filter(AOTF)

  • You, Jang-Woo;Kim, Daesuk;Kim, Soohyun;Kong, Hong-Jin;Lee, Yunwoo;Kwak, Yoon-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.4-105
    • /
    • 2001
  • This paper describes a newly designed multipoint process monitoring system based on a NIR acousto-optic tunable filter. The NIR multipoint process monitoring system consists of a NIR AOTF device for wavelength selection, an InGaAs array sensor, and a specially designed iin-line type of optical fiber probe. Unlike a FTS(Fourier Transform Spectrometry) or grating based monitoring system, an AOTF has no moving parts, and it can be rapidly tuned to any wavelength in its operating range within microseconds. Thus, the AOTF is advantageous in terms of faster spectral imaging capability and rigidity required for industrial monitoring environment. In the current feasibility evaluation, an enhanced optical fiber probe with 3 monitoring points was used. However, ...

  • PDF

A Review of Stream Assessment Methodologies and Restoration: The Case of Virginia, USA

  • Bender, Shera M.;Ahn, Chang-Woo
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.69-79
    • /
    • 2011
  • Rapid population growth and land use changes have severely degraded streams across the United States. In response, there has been a surge in the number of stream restoration projects, including stream restoration for mitigation purposes. Currently, most projects do not include evaluation and monitoring, which are critical in the success of stream restoration projects. The goal of this study is to review the current status of assessment methodologies and restoration approaches for streams in Virginia, with the aim of assisting the restoration community in making sound decisions. As part of the study, stream restoration projects data from a project in Fairfax County, Virginia was assessed. This review revealed that the stream assessment methodologies currently applied to restoration are visuallybased and do not include biological data collection and/or a method to incorporate watershed information. It was found from the case study that out of the twenty nine restoration projects that had occurred between 1995 and 2003 in Fairfax County, nineteen projects reported bank stabilization as a goal or the only goal, indicating an emphasis on a single physical component rather than on the overall ecological integrity of streams. It also turned out that only seven projects conducted any level of monitoring as part of the restoration, confirming the lack of evaluation and monitoring. However, Fairfax County has recently improved its stream restoration practices by developing and incorporating watershed management plans. This now provides one of the better cases that might be looked upon by stakeholders when planning future stream restoration projects.

Structural health monitoring of the Jiangyin Bridge: system upgrade and data analysis

  • Zhou, H.F.;Ni, Y.Q.;Ko, J.M.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.637-662
    • /
    • 2013
  • The Jiangyin Bridge is a suspension bridge with a main span of 1385 m over the Yangtze River in Jiangsu Province, China. Being the first bridge with a main span exceeding 1 km in Chinese mainland, it had been instrumented with a structural health monitoring (SHM) system when completed in 1999. After operation for several years, it was found with malfunction in sensors and data acquisition units, and insufficient sensors to provide necessary information for structural health evaluation. This study reports the SHM system upgrade project on the Jiangyin Bridge. Although implementations of SHM system have been reported worldwide, few studies are available on the upgrade of SHM system so far. Recognizing this, the upgrade of original SHM system for the bridge is first discussed in detail. Especially, lessons learned from the original SHM system are applied to the design of upgraded SHM system right away. Then, performance assessment of the bridge, including: (i) characterization of temperature profiles and effects; (ii) recognition of wind characteristics and effects; and (iii) identification of modal properties, is carried out by making use of the long-term monitoring data obtained from the upgraded SHM system. Emphasis is placed on the verification of design assumptions and prediction of bridge behavior or extreme responses. The results may provide the baseline for structural health evaluation.

A Study on the Introduction of Certification Evaluation System for Quality Management of Extracurricular Programs of Duksung Women's University: Post Certification System Based on Continuous Monitoring Convergence (덕성여자대학교 비교과프로그램 품질관리 인증평가제 도입 검토: 상시 모니터링(continuous monitoring) 융합 기반 사후인증체제)

  • Kim, Young-Jun;Kwon, Ryang-Hee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • The purpose of this study was to examine the introduction of certification evaluation system for quality management of extracurricular program of Duksung Women's University. The research method was composed of two procedures, such as literature analysis and expert meetings. The contents of the study consisted of the accompanying conditions for the introduction of the certification evaluation system to implement the quality management of the extracurricular programs, which is operated in various ways in order to support the reinforcement of students' learning competencies at Duksung Women's University, according to a more formal level and a systematic flow. As a result of the study, the 「Regulations on the Evaluation of Extracurricular Program Certification」 is not only the main foundation for actualizing the link flow between continuous monitoring of extracurricular programs and annual performance evaluation, but also the common points for each university that is establishing the integrated management support system of comparative programs including Duksung Women's University.

Monitoring regional inequalities in climate change risk - A Focus on Heatwave - (기후변화 리스크의 지역 불평등 모니터링 : 폭염을 중심으로)

  • Kim, Geun-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.97-107
    • /
    • 2021
  • Abnormal climate caused by climate change causes enormous social and economic damage. And such damage and its impact may vary depending on the location and regional characteristics of the region and the social and economic conditions of local residents. Therefore, it is necessary to continuously monitor whether there are indicators that are weaker than other regions among the detailed indicators that constitute the risk, exposure and vulnerability of climate change risk. In this study, the concept of climate change risk was used for heatwave to determine regional inequality of climate change risk. In other words, it was judged that inequality in climate change risk occurred in regions with high risk but high exposure and low vulnerability compared to other regions. As a result of the analysis, it was found that 13 local governments in Korea experienced regional inequality in climate change risk. In order to resolve regional inequality in climate change risks, the current status of regional inequality in climate change should be checked based on the analysis proposed in this study, there is a need for an evaluation and monitoring system that can provide appropriate feedback on areas where inequality has occurred. This continuous evaluation and monitoring-based feedback system is expected to be of great help in resolving regional inequality in climate change risks.

Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment

  • Kim, Jeong Ho;Park, Ki Hyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.801-805
    • /
    • 2018
  • In this study, an underwater radiation detector was built using a GAGG(Ce) scintillator and silicon photomultiplier to establish an underwater radiation exposure monitoring system. The GAGG(Ce) scintillator is suitable for small radiation detectors as it strongly absorbs gamma rays and has a high light emission rate with no deliquescent properties. Additionally, the silicon photomultiplier is a light sensor with characteristics such as small size and low applied voltage. Further, a program and mobile app were developed to monitor the radiation coefficient values generated from the detector. According to the results of the evaluation of the characteristics of the underwater radiation monitoring system, when tested for its responsiveness to radiation intensity and reactivity, the system exhibited a coefficient of determination of at least 0.99 with respect to the radiation source distance. Additionally, when tested for its underwater environmental temperature dependence, the monitoring system exhibited an increase in the count rate up to a certain temperature because of the increasing dark current and a decrease in the count rate because of decreasing overvoltage. Extended studies based on the results of this study are expected to greatly contribute to immediate and continuing evaluation of the degree of radioactive contamination in underwater environments.

Performance Monitoring Results, Evaluation and Analysis of 50kW Grid-Connected PV System (50kW급 계통연계형 태양광발전시스템의 성능모니터링 결과 및 평가분석)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-MI;Yu, Gwon-Jong;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • Monitoring system is constructed for evaluating and analyzing performance of installed 50kW grid-connected PV system and have been monitored since October 2005. As climatic and irradiation conditions have been varied through long-term operation, there is necessity for evaluating numerical values of PV(Photovoltaic) system performance to observe the overall effect of environmental conditions on their operation characteristics. This paper presents performance monitoring results and analysis on component perspective(PV array and power conditioning system) and global perspective(yield, losses) of PV system for one year monitoring periods.

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.