DOI QR코드

DOI QR Code

Design of Compression Pants for Wireless sEMG Monitoring using e-textile

E-textile을 이용한 무선 sEMG 모니터링 컴프레션 바지 설계

  • Heejae Jin (Dept. of Fashion Design and Merchandising, Kongju National University) ;
  • Hyojeong Lee (Dept. of Fashion Design and Merchandising, Kongju National University)
  • 진희재 (국립공주대학교 의류상품학과) ;
  • 이효정 (국립공주대학교 의류상품학과)
  • Received : 2023.09.22
  • Accepted : 2023.11.03
  • Published : 2024.02.29

Abstract

This study developed compression pants with excellent wearability and signal quality by approaching the design of wireless sEMG monitoring pants from the perspective of technical design, including the evaluation of wearability and the stable wireless transmission of signals through electrode and circuit design, and using e-textiles. An electrode, sewn with silver thread and a circuit stitched in a zigzag pattern using stainless steel wire, were applied. Additionally, polyurethane sealing tape was used to enhance adherence to the skin and reduce electrical resistance. Conductive snaps completed the design, allowing attachment and detachment to the bio-signal acquisition mainboard. Through the subjects' evaluation, it was determined that the final pants were applied with a pattern reduction rate of 25% to provide superior comfort according to different body parts while also minimizing skin irritation around the thigh circuit. The final pants for wireless sEMG monitoring, which demonstrated stable transmission of wireless measurements, was positively evaluated in terms of cognitive acceptability. This study is significant in that it achieved an optimal design by considering both technical aspects and the electrical characteristics of bio-signal monitoring garments, as well as the wearer's perception when designing smart wear.

Keywords

Acknowledgement

이 성과는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2018R1C1B5086363).

References

  1. Acar, G., Ozturk, O., Golparvar, A. J., Elboshra, T. A., Bohringer, K., & Yapici, M. K. (2019). Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics, 8(5), 479. https://doi.org/10.3390/electronics8050479
  2. Aquino, J. M., & Roper, J. L. (2018). Intraindividual variability and validity in smart apparel muscle activity measurements during exercise in men. International Journal of Exercise Science, 11(7), 516-525.
  3. Bae, J. (2021). The exploratory study for the application of artificial intelligence in smart healthcare. Logos Management Review, 19(4), 180-196. https://doi.org/10.22724/LMR.2021.19.4.179
  4. Bowerman, S. J., Smith, D. R., Carlson, M., & King, G. A. (2006). A comparison of factors influencing ACL injury in male and female athletes and non-athletes. Physical Therapy in Sport, 7(3), 144-152. https://doi-org.libproxy.kongju.ac.kr/10.1016/j.ptsp.2006.05.003
  5. Cho, J. H., Lee, J. S., & Kim, S. S. (2005). A Study of the meridian muscle electrography for the clinical application. Journal of Oriental Rehabilitation Medicine, 15(4), 89-104.
  6. Choi, J., & Hong, K. (2015). 3D skin length deformation of lower body during knee joint flexion for the practical application of functional sportswear. Applied Ergonomics, 48, 186-201. https://doi-org.libproxy.kongju.ac.kr/10.1016/j.apergo.2014.11.016
  7. Cole, J. J. C. (2016). Patternmaking with stretch knit fabrics. Bloomsbury Publishing USA.
  8. De Mulatier, S., Nasreldin, M., Delattre, R., Ramuz, M., & Djenizian, T. (2018). Electronic circuits integration in textiles for data processing in wearable technologies. Advanced Materials Technologies, 3(10), 1700320.
  9. Denis, A. G. C. (1996). Use of the force-velocity test to determine the optimal braking force for a sprint exercise on a friction-loaded cycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 74, 420427. https://doi.org/10.1007/BF02337722
  10. Di Giminiani, R., Cardinale, M., Ferrari, M., & Quaresima, V. (2020). Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadriceps activity during strength and endurance exercises. Sensors, 20(17), 4664. https://doi.org/10.3390/s20174664
  11. Dunne, L. (2010). Smart clothing in practice: Key design barriers to commercialization. Fashion Practice, 2(1), 41-65. https://doi.org/10.2752/175693810X12640026716393
  12. Goncu-Berk, G., & Tuna, B. G. (2021). The effect of sleeve pattern and fit on e-textile electromyography (EMG) electrode performance in smart clothing design. Sensors, 21(16), 5621. https://doi.org/10.3390/s21165621
  13. Han, H. (2019). Influencing factors on purchase intention for smart healthcare clothing by gender and age-Focused on TAM, clothing attributes, health-lifestyle, and fashion innovativeness. The Research Journal of the Costume Culture, 27(6), 615-631. https://doi.org/10.29049/rjcc.2019.27.6.615
  14. Jeong, Y. (2011). Development status of solar garments and a survey on the solar clothing construction. Fashion & Textile Research Journal, 13(5), 806-814.
  15. Jeong, Y., & Yang, Y. (2012). Development of tight-fitting upper clothing for measuring ECG-A focus on weft reduction rate and subjective assessment. Journal of the Korean Society of Clothing and Textiles, 36(11), 1174-1185. http://dx.doi.org/10.5850/JKSCT.2012.36.11.1174
  16. Joo, M. I., Ko, D. H., & Kim, H. C. (2016). Development of smart healthcare wear system for acquiring vital signs and monitoring personal health. Journal of Korea Multimedia Society, 19(5), 808-817. https://doi.org/10.9717/kmms.2016.19.5.808
  17. Kim, H., Kim, S., Lim, D., & Jeong, W. (2022). Development and characterization of embroidery-based textile electrodes for surface EMG detection. Sensors, 22(13), 4746. https://doi.org/10.3390/s22134746
  18. Lee, H. (2017). Evaluation of muscle activity as influenced by shape and arrangement of the EMG electrodes in the musculature of the upper and lower extremities. Korean Journal of Human Ecology, 26, 445-457. https://doi.org/10.5934/kjhe.2017.26.5.445
  19. Lee, H. J., Kim, N. Y., Hong, K. H., & Lee, Y. J. (2015). Selection and design of functional area of compression garment for improvement in knee protection. Korean Journal of Human Ecology, 24(1), 97-109. https://doi.org/10.5934/kjhe.2015.24.1.97
  20. Lee, H., & Lee, Y. (2023). Optimal prototype design of dry textile electrode-based compression pants for surface electromyography measurements. International Journal of Clothing Science and Technology, 35(1), 120-134. https://doi-org.libproxy.kongju.ac.kr/10.1108/IJCST-01-2022-0011
  21. Lee, H., Hong, K., & Lee, Y. (2017). Compression pants with differential pressurization: Kinetic and kinematical effects on stability. Textile Research Journal, 87(13), 1554-1564. https://doi.org/10.1177/0040517516657056
  22. Lee, H., Park, S., & Lee, Y. (2021). Evaluation of seam puckering and seam strength for conductive threads. Journal of the Korean Society of Clothing and Textiles, 45(1), 46-55. https://doi.org/10.5850/JKSCT.2021.45.1.46
  23. Lee, J.-R. (2011). Suggestion of functional smart jacket based on wearable technology. Journal of the Korean Society of Clothing and Textiles, 35(3), 292-303.
  24. Lee, S., Kim, H., & Jeong, W. (2023). Development and evaluation of wearable smart clothing for combined EMG devices. and Textiles Research Journal, 25(2), 210-220. https://doi.org/10.5805/SFTI.2023.25.2.210
  25. Lee, S., Kim, M.-O., Kang, T., Park, J., & Choi, Y. (2018). Knit band sensor for myoelectric control of surface EMG-based prosthetic hand. IEEE Sensors Journal, 18(20), 8578-8586. https://doi.org/10.1109/JSEN.2018.2865623
  26. Merletti, R., Biey, D., Biey, M., Prato, G., & Orusa, A. (1985). On-line monitoring of the median frequency of the surface EMG power spectrum. IEEE Transactions on Biomedical Engineering, 32(1), 1-7.
  27. Nayak, R., Wang, L., & Padhye, R. (2015). Electronic textiles for military personnel. In T. Dias (Ed.), Electronic Textiles (pp. 239-256). Woodhead Publishing.
  28. Ozturk, O., Golparvar, A., & Yapici, M. K. (2021, October). Smart armband with graphene textile electrodes for EMGbased muscle fatigue monitoring [Conference session]. 2021 IEEE Sensors. Sydney, Australia. https://doi.org/10.1109/SENSORS47087.2021.9639564.
  29. Paradiso, R., Loriga, G., Taccini, N., Gemignani, A., & Ghelarducci, B. (2005). WEALTHY-a wearable healthcare system: New frontier on e-textile. Journal of Telecommunications and Information Technology, 4, 105-113.
  30. Park, H. J., Hong, K. H., Kim, S.-H., & Shin, S.-S. (2007). Development of the practical garment apparatus to measure vital sign of ECG for u-health care. Journal of the Korean Society of Clothing and Textiles, 31(2), 292-299.
  31. Schneegass, S., & Amft, O. (2017). Smart textiles. Springer.
  32. Seoul National University Hospital. (n.d.). Electromyopraphy. http://www.snuh.org/health/nMedInfo/nList.do?pageIndex=16&sortType=&searchNWord=%EA%B0%80
  33. Simegnaw, A. A., Malengier, B., Rotich, G., Tadesse, M. G., & Van Langenhove, L. (2021). Review on the Integration of Microelectronics for E-Textile. Materials, 14(17), 5113. https://doi.org/10.3390/ma14175113
  34. Size Korea. (n.d.). Measurement Item Search. https://sizekore a.kr/human-meas-search/human-data-search/meas-item
  35. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. Sensors, 14(7), 11957-11992. https://doi.org/10.3390/s140711957
  36. Wu, W., Pirbhulal, S., Zhang, H., & Mukhopadhyay, S. C. (2018). Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system. IEEE Journal of Biomedical and Health Informatics, 23(2), 703-713.
  37. Xiao, X., Pirbhulal, S., Dong, K., Wu, W., & Mei, X. (2017). Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring. Journal of Sensors, Article ID7539840, 13. https://doi.org/10.1155/2017/7539840
  38. Yapici, M. K., Alkhidir, T., Samad, Y. A., & Liao, K. (2015). Graphene-clad textile electrodes for electrocardiogram monitoring. Sensors and Actuators B: Chemical, 221, 1469-1474. https://doi-org.libproxy.kongju.ac.kr/10.1016/j.snb.2015.07.111