• Title/Summary/Keyword: Monitoring and Learning

Search Result 795, Processing Time 0.027 seconds

Explorating Meta-Affect Types in Mathematical Learning (수학 학습에서의 메타-정의 유형 탐색)

  • Kim, Sun-Hee;Park, Jung-Un
    • School Mathematics
    • /
    • v.13 no.3
    • /
    • pp.469-484
    • /
    • 2011
  • Students experience various affects in solving mathematical problem and learning mathematics. Focusing on meta-affect in affective domain, we explored the types of meta-affect. Our research provides illustrative examples and analysis of meta-affect during solving problem. As a result, meta-affect has four types i.e. monitoring of affect, evaluation of emotion, control of emotion, and utilization of affect. And meta-affect is a main key to decide how to handle affect and influence student's cognitive strategies and affect.

  • PDF

Harnessing sparsity in lamb wave-based damage detection for beams

  • Sen, Debarshi;Nagarajaiah, Satish;Gopalakrishnan, S.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.381-396
    • /
    • 2017
  • Structural health monitoring (SHM) is a necessity for reliable and efficient functioning of engineering systems. Damage detection (DD) is a crucial component of any SHM system. Lamb waves are a popular means to DD owing to their sensitivity to small damages over a substantial length. This typically involves an active sensing paradigm in a pitch-catch setting, that involves two piezo-sensors, a transmitter and a receiver. In this paper, we propose a data-intensive DD approach for beam structures using high frequency signals acquired from beams in a pitch-catch setting. The key idea is to develop a statistical learning-based approach, that harnesses the inherent sparsity in the problem. The proposed approach performs damage detection, localization in beams. In addition, quantification is possible too with prior calibration. We demonstrate numerically that the proposed approach achieves 100% accuracy in detection and localization even with a signal to noise ratio of 25 dB.

A Quest of Design Principles of Cognitive Artifacts through Case Analysis in e-Learning: A Learner-Centered Perspective

  • PARK, Seong Ik;LIM, Wan Chul
    • Educational Technology International
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2009
  • Learners are often posited in a paradoxical situation where they are not fully involved in decision making processes on how to learn, in designing their tools. Cognitive artifacts in e-learning are supposed to effectively support learner-centered e-learning. The purpose of the study is to analyze cases of cognitive artifacts and to inquire those design principles for facilitating the learner-centered e-learning. Four research questions are suggested: First, it will be analyzed the characteristics of learners with respect to design of cognitive artifacts for supporting the learner-centered e-learning. Second, characteristics of four cases to design cognitive artifacts in learner-centered e-learning environment are analyzed. Third, it will be suggested the appropriate design principles of cognitive artifacts to facilitating learner-centered learning in e-learning environment. Four cases of cognitive artifacts design in learner-centered e-learning was identified as follows: Wiki software as cognitive artifacts in computer-supported collaborative learning; 'Play Around Network (PAN)' as cognitive artifact to monitor learning activities in knowledge community; Knowledge Forum System (KFS) as a cognitive artifact in knowledge building; cognitive artifacts in Courses-as-seeds applied meta-design. Five design principles are concluded as follows: Promoting externalization of cognitive artifacts to private media; Helping learners to initiate their learning processes; Encouraging learners to make connections with other learners' knowledge building and their cognitive artifacts; Promoting monitoring of participants' contributions in collaborative knowledge building; Supporting learners to design their cognitive artifacts.

Analyzing Dog Health Status through Its Own Behavioral Activities

  • Karimov, Botirjon;Muminov, Azamjon;Buriboev, Abror;Lee, Cheol-Won;Jeon, Heung Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.263-266
    • /
    • 2019
  • In this paper, we suggest an activity and health monitoring system to observe the status of the dogs in real time. We also propose a k-days algorithm which helps monitoring pet health status using classified activity data from a machine learning approach. One of the best machine learning algorithm is used for the classification activity of dogs. Dog health status is acquired by comparing current activity calculation with passed k-days activities average. It is considered as a good, warning and bad health status for differences between current and k-days summarized moving average (SMA) > 30, SMA between 30 and 50, and SMA < 50, respectively.

  • PDF

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

A new method to detect attacks on the Internet of Things (IoT) using adaptive learning based on cellular learning automata

  • Dogani, Javad;Farahmand, Mahdieh;Daryanavard, Hassan
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.155-167
    • /
    • 2022
  • The Internet of Things (IoT) is a new paradigm that connects physical and virtual objects from various domains such as home automation, industrial processes, human health, and monitoring. IoT sensors receive information from their environment and forward it to their neighboring nodes. However, the large amounts of exchanged data are vulnerable to attacks that reduce the network performance. Most of the previous security methods for IoT have neglected the energy consumption of IoT, thereby affecting the performance and reducing the network lifetime. This paper presents a new multistep routing protocol based on cellular learning automata. The network lifetime is improved by a performance-based adaptive reward and fine parameters. Nodes can vote on the reliability of their neighbors, achieving network reliability and a reasonable level of security. Overall, the proposed method balances the security and reliability with the energy consumption of the network.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation

  • Hsu, Shun-Hsiang;Chang, Ting-Wei;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.207-220
    • /
    • 2022
  • Structural health monitoring (SHM) plays a vital role in the maintenance and operation of constructions. In recent years, autonomous inspection has received considerable attention because conventional monitoring methods are inefficient and expensive to some extent. To develop autonomous inspection, a potential approach of crack identification is needed to locate defects. Therefore, this study exploits two deep learning-based segmentation models, DeepLabv3+ and Mask R-CNN, for crack segmentation because these two segmentation models can outperform other similar models on public datasets. Additionally, impacts of label quality on model performance are explored to obtain an empirical guideline on the preparation of image datasets. The influence of image cropping and label refining are also investigated, and different strategies are applied to the dataset, resulting in six alternated datasets. By conducting experiments with these datasets, the highest mean Intersection-over-Union (mIoU), 75%, is achieved by Mask R-CNN. The rise in the percentage of annotations by image cropping improves model performance while the label refining has opposite effects on the two models. As the label refining results in fewer error annotations of cracks, this modification enhances the performance of DeepLabv3+. Instead, the performance of Mask R-CNN decreases because fragmented annotations may mistake an instance as multiple instances. To sum up, both DeepLabv3+ and Mask R-CNN are capable of crack identification, and an empirical guideline on the data preparation is presented to strengthen identification successfulness via image cropping and label refining.

Extreme Learning Machine Approach for Real Time Voltage Stability Monitoring in a Smart Grid System using Synchronized Phasor Measurements

  • Duraipandy, P.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1527-1534
    • /
    • 2016
  • Online voltage stability monitoring using real-time measurements is one of the most important tasks in a smart grid system to maintain the grid stability. Loading margin is a good indicator for assessing the voltage stability level. This paper presents an Extreme Learning Machine (ELM) approach for estimation of voltage stability level under credible contingencies using real-time measurements from Phasor Measurement Units (PMUs). PMUs enable a much higher data sampling rate and provide synchronized measurements of real-time phasors of voltages and currents. Depth First (DF) algorithm is used for optimally placing the PMUs. To make the ELM approach applicable for a large scale power system problem, Mutual information (MI)-based feature selection is proposed to achieve the dimensionality reduction. MI-based feature selection reduces the number of network input features which reduces the network training time and improves the generalization capability. Voltage magnitudes and phase angles received from PMUs are fed as inputs to the ELM model. IEEE 30-bus test system is considered for demonstrating the effectiveness of the proposed methodology for estimating the voltage stability level under various loading conditions considering single line contingencies. Simulation results validate the suitability of the technique for fast and accurate online voltage stability assessment using PMU data.

Analysis of Vision based Technology for Smart Railway Station System (스마트 철도역사시스템 구축을 위한 영상기반 기술 분석)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1065-1070
    • /
    • 2018
  • These days there are many researches on the vision based technology using deep learning. The lots of studies on the intelligent operation and maintenance for railway station system used technologies with vision analysis function. This paper analyzes the papers which studied the intelligent station system with vision analysis function for passengers and facilities monitoring, platform monitoring, fire monitoring, and effective operation and design. Also, this paper proposes research which uses the more powerful vision technology with deep-learning for smart railway station system.