• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.034 seconds

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

  • Hwayeong Cheon;Young-Je Son;Sung Bae Park;Pyoung-Seop Shim;Joo-Hiuk Son;Hee-Jin Yang
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.382-392
    • /
    • 2023
  • Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters-growth and decay rates, and peak center and heights-of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

Modified Average Filter for Salt and Pepper Noise Removal (Salt and Pepper 잡음제거를 위한 변형된 평균필터)

  • Lee, Hwa-Yeong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.115-117
    • /
    • 2021
  • Currently, as IoT technology develops, monitoring systems are being used in various fields, and image processing is being used in various forms. Image data causes noise due to various causes during the transmission and reception process, and if it is not removed, loss of image information or error propagation occurs. Therefore, denoising images is essential. Typical methods of eliminating Salt and Pepper noise in images include AF, MF, and A-TMF. However, existing methods have the disadvantage of being somewhat inadequate in high-density noise. Therefore, in this paper, we propose an algorithm for determining noise for Salt and Pepper denoising and replacing the central pixel with an original pixel if it is non-noise, and processing the filtering mask by segmenting and averaging it in eight directions. We evaluate the performance by comparing and analyzing the proposed algorithms with existing methods.

  • PDF

Performance Evaluation of Machine Learning Algorithms for Cloud Removal of Optical Imagery: A Case Study in Cropland (광학 영상의 구름 제거를 위한 기계학습 알고리즘의 예측 성능 평가: 농경지 사례 연구)

  • Soyeon Park;Geun-Ho Kwak;Ho-Yong Ahn;No-Wook Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.507-519
    • /
    • 2023
  • Multi-temporal optical images have been utilized for time-series monitoring of croplands. However, the presence of clouds imposes limitations on image availability, often requiring a cloud removal procedure. This study assesses the applicability of various machine learning algorithms for effective cloud removal in optical imagery. We conducted comparative experiments by focusing on two key variables that significantly influence the predictive performance of machine learning algorithms: (1) land-cover types of training data and (2) temporal variability of land-cover types. Three machine learning algorithms, including Gaussian process regression (GPR), support vector machine (SVM), and random forest (RF), were employed for the experiments using simulated cloudy images in paddy fields of Gunsan. GPR and SVM exhibited superior prediction accuracy when the training data had the same land-cover types as the cloud region, and GPR showed the best stability with respect to sampling fluctuations. In addition, RF was the least affected by the land-cover types and temporal variations of training data. These results indicate that GPR is recommended when the land-cover type and spectral characteristics of the training data are the same as those of the cloud region. On the other hand, RF should be applied when it is difficult to obtain training data with the same land-cover types as the cloud region. Therefore, the land-cover types in cloud areas should be taken into account for extracting informative training data along with selecting the optimal machine learning algorithm.

Artificial intelligence-based blood pressure prediction using photoplethysmography signals

  • Yonghee Lee;YongWan Ju;Jundong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.155-160
    • /
    • 2023
  • This paper presents a method for predicting blood pressure using the photoplethysmography signals. First, after measuring the optical blood flow signal, artifacts are removed through a preprocessing process, and a signal for learning is obtained. In addition, weight and height, which affect blood pressure, are measured as additional information. Next, a system is built to estimate systolic and diastolic blood pressure by learning the photoplethysmography signals, height, and weight as input variables through an artificial intelligence algorithm. The constructed system predicts the systolic and diastolic blood pressures using the inputs. The proposed method can continuously predict blood pressure in real time by receiving photoplethysmography signals that reflect the state of the heart and blood vessels, and the height and weight of the subject in an unconstrained method. In order to confirm the usefulness of the artificial intelligence-based blood pressure prediction system presented in this study, the usefulness of the results is verified by comparing the measured blood pressure with the predicted blood pressure.

A Study on Building a Scalable Change Detection System Based on QGIS with High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 QGIS 기반 확장 가능한 변화탐지 시스템 구축 방안 연구)

  • Byoung Gil Kim;Chang Jin Ahn;Gayeon Ha
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1763-1770
    • /
    • 2023
  • The availability of high-resolution satellite image time series data has led to an increase in change detection research. Various methods are being studied, such as satellite image pixel and object-level change detection algorithms, as well as algorithms that apply deep learning technology. In this paper, we propose a QGIS plugin-based system to enhance the utilization of these useful results and present an actual implementation case. The proposed system is a system for intensive change detection and monitoring of areas of interest, and we propose a convenient system expansion method for algorithms to be developed in the future. Furthermore, it is expected to contribute to the construction of satellite image utilization systems by presenting the basic structure of commercialization of change detection research.

A Study on Object Detection and Warning Model for the Prevention of Right Turn Car Accidents (우회전 차량 사고 예방을 위한 객체 탐지 및 경고 모델 연구)

  • Sang-Joon Cho;Seong-uk Shin;Myeong-Jae Noh
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.33-39
    • /
    • 2023
  • With a continuous occurrence of right-turn traffic accidents at intersections, there is an increasing demand for measures to address these incidents. In response, a technology has been developed to detect the presence of pedestrians through object detection in CCTV footage at right-turn areas and display warning messages on the screen to alert drivers. The YOLO (You Only Look Once) model, a type of object detection model, was employed to assess the performance of object detection. An algorithm was also devised to address misidentification issues and generate warning messages when pedestrians are detected. The accuracy of recognizing pedestrians or objects and outputting warning messages was measured at approximately 82%, suggesting a potential contribution to preventing right-turn accidents

Development of a Test Environment for Performance Evaluation of the Vision-aided Navigation System for VTOL UAVs (수직 이착륙 무인 항공기용 영상보정항법 시스템 성능평가를 위한 검증환경 개발)

  • Sebeen Park;Hyuncheol Shin;Chul Joo Chung
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.788-797
    • /
    • 2023
  • In this paper, we introduced a test environment to test a vision-aided navigation system, as an alternative navigation system when global positioning system (GPS) is unavailable, for vertical take-off and landing (VTOL) unmanned aerial system. It is efficient to use a virtual environment to test and evaluate the vision-aided navigation system under development, but currently no suitable equipment has been developed in Korea. Thus, the proposed test environment is developed to evaluate the performance of the navigation system by generating input signal modeling and simulating operation environment of the system, and by monitoring output signal. This paper comprehensively describes research procedure from derivation of requirements specifications to hardware/software design according to the requirements, and production of the test environment. This test environment was used for evaluating the vision-aided navigation algorithm which we are developing, and conducting simulation based pre-flight tests.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.