• Title/Summary/Keyword: Monitoring algorithm

Search Result 1,835, Processing Time 0.035 seconds

Wrist Wearable Device for the Measurement and Analysis of Physiological Signals (생체신호 측정 및 분석을 위한 손목 착용형 단말기)

  • Im, Jae Joong;Li, Ming Kui;Hwang, Chan Song
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.65-73
    • /
    • 2012
  • Wrist wearable device for the measurement of pulse rate, ECG, and activity during normal daily life, which could be used for the continuous monitoring and remote transmission of acquired data, was developed. Pressure sensor, device attached electrodes, and 3-degree accelerometer were used. Analysis algorithm and firmware program were established for providing diagnostic information for the users. Results of this study, possible for the management of health report and transmission of the results through bluetooth by wearing simple personal wrist device, could be used for the development of portable device in the u-healthcare environment.

A Study on Factory Monitoring System based on Manufacturing Facility Condition Diagnosis Algorithm (제조설비 상태 진단 알고리즘 기반의 공장 모니터링 시스템에 대한 연구)

  • Song, Enjoo;Song, Kyogin;Ko, Dongbeom;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.261-269
    • /
    • 2020
  • This paper introduces a facility simulation system for efficient error detection of smart factories. The facility simulation system, which can infer and solve errors autonomously when analyzing the relationship between plant facilities, is one of the important technologies for constructing a smart factory with high productivity. In order to implement this autonomic control system, it is necessary to be able to identify the status of facilities and analyze the relationship between facilities through the data of factory facilities. Therefore, in this paper, we design and develop a simulation program that can detect the equipment that causes the process error when an error occurs based on the process scenario using the defined equipment status. The simulation shows that the error inference process based on the process map and facility status is more efficient than the general error inference process. This simulation program provides an intuitive view of the reasoning and resolution of facility failures.

A Design and Implementation Vessel USN Middleware of Server-Side Method based on Context Aware (Server-Side 방식의 상황 인식 기반 선박 USN 미들웨어 구현 및 설계)

  • Song, Byoung-Ho;Song, Iick-Ho;Kim, Jong-Hwa;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.116-124
    • /
    • 2011
  • In this paper, We implemented vessel USN middleware by server-side method considering characteristics of ocean environment. We designed multiple query process module in order to efficient process multidimensional sensor stream data and proposed optimized query plan using Mjoin query and hash table. This paper proposed method that context aware of vessel and manage considering characteristics of ocean. We decided to risk context using SVM algorithm in context awareness management module. As a result, we obtained about 87.5% average accuracy for fire case and about 85.1% average accuracy for vessel risk case by input 5,000 data sets and implemented vessel USN monitoring system.

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

Acceleration for Removing Sea-fog using Graphic Processors and Parallel Processing (그래픽 프로세서를 이용한 병렬연산 기반 해무 제거 고속화)

  • Kim, Young-doo;Kwak, Jae-min;Seo, Young-ho;Choi, Hyun-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.485-490
    • /
    • 2017
  • In this paper, we propose a technique for high speed removal of sea-fog using a graphic processor. This technique uses a host processor(CPU) and several graphics processors(GPU) capable of parallel processing to remove sea-fog from the input image. In the process of removing sea-fog, the dark channel extraction, the maximum brightness channel extraction, and the calculation of the transmission are performed by the host processor, and the process of refining the transmission by applying the bidirectional filter is performed in parallel through the graphic processor. To verify the proposed parallel processing method, three NVIDIA GTX 1070 GPUs were used to construct the verification environment. As a result, it takes about 140ms when implemented with one graphics processor, and 26ms when implemented using OpenMP and multiple GPGPUs. The proposed a parallel processing algorithm based on the graphics processor unit can be used for safe navigation, port control and monitoring system.

Multimedia No-reference Video Quality Assessment Methods Using Bit Stream Information (비트스트림 정보를 이용한 멀티미디어 동영상의 무기준법 화질평가방법)

  • Seo, Guiwon;Ok, Jiheon;Lee, Kwon;Lee, Jae Ho;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.283-296
    • /
    • 2013
  • Various video services with networks are increasingly available as smart phones, computers and IPTV are widely used. However, transmission over networks may experience transmission errors due to traffic increases and noise. As a result, video quality may suffer. Therefore, quality monitoring emerges as an important issue. In this paper, we propose a video quality assessment method using bit stream information. The video quality metric is calculated using header information and ES (elementary stream) information. To assess performance of the proposed algorithm, subjective quality assessment tests are conducted (VGA resolution). It is shown high correlation between subjective result and the proposed method.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Fast and Accurate Rigid Registration of 3D CT Images by Combining Feature and Intensity

  • June, Naw Chit Too;Cui, Xuenan;Li, Shengzhe;Kim, Hak-Il;Kwack, Kyu-Sung
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Computed tomography (CT) images are widely used for the analysis of the temporal evaluation or monitoring of the progression of a disease. The follow-up examinations of CT scan images of the same patient require a 3D registration technique. In this paper, an automatic and robust registration is proposed for the rigid registration of 3D CT images. The proposed method involves two steps. Firstly, the two CT volumes are aligned based on their principal axes, and then, the alignment from the previous step is refined by the optimization of the similarity score of the image's voxel. Normalized cross correlation (NCC) is used as a similarity metric and a downhill simplex method is employed to find out the optimal score. The performance of the algorithm is evaluated on phantom images and knee synthetic CT images. By the extraction of the initial transformation parameters with principal axis of the binary volumes, the searching space to find out the parameters is reduced in the optimization step. Thus, the overall registration time is algorithmically decreased without the deterioration of the accuracy. The preliminary experimental results of the study demonstrate that the proposed method can be applied to rigid registration problems of real patient images.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Creating Atmospheric Scattering Corrected True Color Image from the COMS/GOCI Data (천리안위성 해양탑재체 자료를 이용한 대기산란 효과가 제거된 컬러합성 영상 제작)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • The Geostationary Ocean Color Imager (GOCI), the first geostationary ocean color observation instrument launched in 2010 on board the Communication, Ocean, and Meteorological Satellite (COMS), has been generating the operational level 1 data. This study describes a methodology for creating the GOCI true color image and data processing software, namely the GOCI RGB maker. The algorithm uses a generic atmospheric correction and reprojection technique to produce the color composite image. Especially, the program is designed for educational purpose in a way that the region of interest and image size can be determined by the user. By distributing software to public, it would maximize the understanding and utilizing the GOCI data. Moreover, images produced from the geostationary observations are expected to be an excellent tool for monitoring environmental changes.