• Title/Summary/Keyword: Moment-Rotation

Search Result 510, Processing Time 0.024 seconds

Effects of Knee Brace on the Anterior Cruciate Ligament Injury Risk Factors during Spike Take Off in Female Volleyball Players (여자 배구 선수들의 스파이크 도약 시 무릎보호대가 전방십자인대 부상위험 요인에 미치는 영향)

  • Yang, Chang-Soo;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • In volleyball, the most common injuries are anterior cruciate ligament (ACL) tears. For this reason, volleyball players frequently use knee brace as prophylactic and rehabilitation measures. The purpose of the study was to investigate the effects of knee brace on anterior cruciate ligament injuries risk factors during spike take off in female volleyball players. Fifteen female volleyball players were recruited and performed randomly spike take off with and without knee brace. Kinematics and ground reaction data were collected to estimate the anterior cruciate ligament injuries risk factors. The ACL risk factors are knee maximum flexion angle, thigh maximum adduction angle, thigh maximum internal rotation angle, shank maximum abduction angle, shank maximum external rotation angle, knee maximum extension moment and knee maximum abduction moment. Data were analyzed with paired samples t-test with Bonfferoni collection. Female volleyball players with knee brace had no significant results in knee maximum flexion angle, thigh maximum adduction angle, thigh maximum internal rotation angle, shank maximum abduction angle and shank maximum external rotation angle compare to without knee brace. Female volleyball players, however, with knee brace showed more reduced knee maximum extension moment and knee maximal abduction moment than without knee brace. In conclusion, Female volleyball players with knee brace reduced anterior cruciate ligament stress.

A Iris Recognition Using Zernike Moment and Wavelet (Zernike 모멘트와 Wavelet을 이용한 홍채인식)

  • Choi, Chang-Soo;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4568-4575
    • /
    • 2010
  • Iris recognition is a biometric technology that uses iris pattern information, which has features of stability, security etc. Because of this reason, it is especially appropriate under certain circumstances of requiring a high security. Recently, using the iris information has a variety uses in the fields of access control and information security. In extracting the iris feature, it is desirable to extract the feature which is invariant to size, lights, rotation. We have easy solutions to the problem of iris size and lights by previous processing but there is still problem of iris feature extract invariant to rotation. In this paper, To improve an awareness ratio and decline in speed for a revision of rotation, it is proposed that the iris recognition method using Zernike Moment and Daubechies Wavelet. At first step, the proposed method groups rotated iris into similar things by statistical feature of Zernike Moment invariant to a rotation, which shortens processing time of iris recognition and looks equal to an established method in the performance of recognition too. therefore, proposed method could confirm the possibility of effective application for large scale iris recognition system.

Investigation of rotation and shear behaviours of complex steel spherical hinged bearings subject to axial tensile load

  • Shi, Kairong;Pan, Wenzhi;Jiang, Zhengrong;Lv, Junfeng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Steel spherical hinged bearings have high loading capacity, reliable load transfer, flexible rotation with universal hinge and allowance of large displacement and rotation angle. However, bearings are in complex forced states subject to various load combinations, which lead to the significant influence on integral structural safety. Taking the large-tonnage complex steel spherical hinged bearings of Terminal 2 of Guangzhou Baiyun International Airport as an example, full-scale rotation and shear behaviour tests of the bearings subject to axial tensile load are carried out, and the corresponding finite element simulation analyses are conducted. The results of experiments and finite element simulations are in good agreement with the coincident development tendency of stress and deformation. In addition, the measured rotational moment is less than the calculated moment prescriptive by the code, and the relationship between horizontal displacement and horizontal shear force is linear. Finally, based on these results, the rotation and shear stiffness models of bearings subject to axial tensile load are proposed for the refinement analysis of integral structure.

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He;Yangchao Ru;Haifeng Bu;Ming Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

An Analytical Study on the Nonlinear Behavior of Double Angle Connections Subjected to Shear (전단력을 받는 더블 앵글 접합부의 비선형 거동에 관한 해석적 연구)

  • Lee, Soo-Kueon;Hong, Kap-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.65-73
    • /
    • 2000
  • The behavior of double angle connections is analyzed by 3D finite element method using ABAQUS(ver 5.8). Moment-rotation curves for the connections are generated, as well as stress distribution for angle and bolt. Double angle connections have various angle thickness, gage distance and number of bolt. Parameters, such as initial stiffness, plastic tiffness, reference load and curve shape parameter were obtained by regression method using Richard's formula. These parameter lead to predict nonlinear behavior of double angle connection. Design curves giving the parameters of the moment-rotation curves are generated. These parameters are primarily a function of the angle thickness, gage distance and the number of bolts in the connection. Using these parameters, connection moment and its ratio to the full plastic moment capacity Mp of the beam are calculated.

  • PDF

Strength upgrading of steel storage rack frames in the down-aisle direction

  • El Kadi, Bassel;Cosgun, Cumhur;Mangir, Atakan;Kiymaz, Guven
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper focuses on the seismic performance of pallet-type steel storage rack structures in their down aisle direction. As evidenced by experimental research, the seismic response of storage racks in the down-aisle direction is strongly affected by the nonlinear moment-rotation response of the beam-to-column connections. In their down-aisle direction, rack structures are designed to resist lateral seismic loads with typical moment frames utilizing proprietary beam-to-column moment-resisting connections. These connections are mostly boltless hooked type connections and they exhibit significantly large rotations resulting in large lateral frame displacements when subjected to strong ground motions. In this paper, typical hooked boltless beam-to-column connections are studied experimentally to obtain their non-linear reversed cyclic moment-rotation response. Additionally, a compound type connection involving the standard hooks and additional bolts were also tested under similar conditions. The simple introduction of the additional bolts within the hooked connection is considered to be a practical way of structural upgrade in the connection. The experimentally evaluated characteristics of the connections are compared in terms of some important performance indicators such as maximum moment and rotation capacity, change in stiffness and accumulated energy levels within the cyclic loading protocol. Finally, the obtained characteristics were used to carry out seismic performance assessment of rack frames incorporating the tested beam-to-column connections. The assessment involves a displacement based approach that utilizes a simple analytical model that captures the seismic behavior of racks in their down-aisle direction. The results of the study indicate that the proposed method of upgrading appears to be a very practical and effective way of increasing the seismic performance of hooked connections and hence the rack frames in their down-aisle direction.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.