DOI QR코드

DOI QR Code

Study of a self-centering beam-column joint with installed tapered steel plate links

  • Liusheng He (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Yangchao Ru (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Haifeng Bu (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Ming Li (Department of Civil Engineering, Suzhou University of Science and Technology)
  • Received : 2021.04.07
  • Accepted : 2023.07.17
  • Published : 2023.08.25

Abstract

In this study, a new type of self-centering beam-column joint with tapered steel plate links is proposed. Firstly, mechanical property of the basic joint (with the prestressed steel strands only, to provide the self-centering ability) and the combined joint (with both the prestressed steel strands and tapered steel plate links, to provide self-centering and energy dissipation simultaneously) is theoretically analyzed. Then, three joints with different dimensions and combinations of tapered plate links are designed and tested through a series of quasi-static cyclic loading tests. Test results show that a nearly bilinear elastic moment-rotation relationship for the basic joint is obtained. With the addition of tapered steel plate links, typical flag-shape hysteretic curves are obtained, which indicates good self-centering and energy dissipating ability of the combined joint. By installing multiple tapered plate links, stiffness and bearing capacity of the beam-column joint can be enhanced. The theoretical moment-rotation relationships agree well with the test results. A simplified macro model of the proposed joint is developed using OpenSees, which simulates reasonably well its hysteretic behavior.

Keywords

Acknowledgement

The authors are grateful for the support from National Natural Science Foundation of China under Grant No. U2239253 and the Fundamental Research Funds for the Central Universities.

References

  1. Azandariani, A.G., Gholhaki, M. and Gorji Azandariani, M. (2022), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel. Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  2. Bruneau, M. and MacRae, G.A. (2017), "Reconstructing Christchurch: a seismic shift in building structural systems", Quake Center Report, University of Canterbury, Christchurch, New Zealand.
  3. Chen, Y., Chen, C. and Chen, C. (2021), "Study on seismic performance of prefabricated self-centering beam to column rotation friction energy dissipation connection", Eng. Struct., 241, 112136. https://doi.org/10.1016/j.engstruct.2021.112136.
  4. Chou, C.C., Chen, J.H., Chen, Y.C. and Tsai, K.C. (2006), "Evaluating performance of post-tensioned steel connections with strands and reduced flange plates", Earthq. Eng. Struct. Dyn., 35(9), 1167-1185. http://doi.org/10.1002/eqe.579.
  5. Chou, C.C., Tsai, K.C. and Yang, W.C. (2009), "Self-centering steel connections with steel bars and a discontinuous composite slab", Earthq. Eng. Struct. Dyn., 38(4), 403-422. https://doi.org/10.1002/eqe.856.
  6. Chou, C.C. and Lai, Y.J. (2009), "Post-tensioned self-centering moment connections with beam bottom flange energy dissipators", J. Constr. Steel Res., 6(10-11), 1931-1941. https://doi.org/10.1016/j.jcsr.2009.06.002.
  7. Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. https://doi.org/10.1115/1.3625046.
  8. Deng, K., Pan, P., Alexandre, L., Pan, Z. and Ye, L. (2013), "Test and simulation of full-scale self-centering beam-to-column connection", Earthq. Eng. Eng. Vib., 12(4), 599-607. https://doi.org/10.1007/s11803-013-0200-2.
  9. Dowden, D.M. and Bruneau, M. (2016), "Dynamic shake-table testing and analytical investigation of self-centering steel plate shear walls", J. Struct. Eng., 142(10), 04016082-1-20. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001547.
  10. Eldin, M.N., Dereje, A.J. and Kim, J. (2020), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.
  11. Firouzianhaij, A., Gorji Azandariani, M., Usefi, N. and Samali, B. (2022), "Performance of baseplate connections in CFS storage rack systems: An experimental, numerical and theoretical study", J. Constr. Steel. Res., 196, 107421. https://doi.org/10.1016/j.jcsr.2022.107421.
  12. Garlock, M.M., Sause, R. and Ricles, J.M. (2007), "Behavior and design of posttensioned steel frame systems", J. Struct. Eng., 133(3), 389-399. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(389).
  13. Garlock, M.M., Ricles, J.M. and Sause, R. (2008), "Influence of design parameters on seismic response of post-tensioned steel MRF systems", Eng. Struct., 30(4), 1037-1047. https://doi.org/10.1016/j.engstruct.2007.05.026.
  14. Gorji Azandariani, M., Ghazijahani, T.G., Mohebkhah, A. and Classen, M. (2021b), "Concrete- and timber-filled tubes under axial compression - Numerical and theoretical study", J. Build., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231.
  15. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel. Res., 196, 107300. https://doi.org/10.1016/j.jcsr.2022.107300.
  16. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  17. Gorji Azandariani, M., Gholhaki, M., Kafi, M. A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021c), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  18. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021a), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  19. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  20. Iyama, J., Seo, C.Y., Ricles, J.M. and Sause, R. (2009), "Self-centering MRFs with bottom flange friction devices under earthquake loading", J. Constr. Steel. Res., 65(2), 314-325. https://doi.org/10.1016/j.jcsr.2008.02.018.
  21. Jiang, H., Bu, H. and He, L. (2020), "Study of a new type of self-centering beam-column joint in steel frame structures", Struct. Des. Tall Build., 29, e1779. https://doi.org/10.1002/tal.1779
  22. Kiani, B.K., Hashemi, B.H. and Torabian, S. (2020), "Optimization of slit dampers to improve energy dissipation capacity and low-cycle-fatigue performance", Eng. Struct., 214, 110609. https://doi.org/10.1016/j.engstruct.2020.110609.
  23. Kim, H.J. and Christopoulos C. (2008), "Friction damped posttensioned self-centering steel moment-resisting frames", J. Struct. Eng., 134(11), 1768-1779. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1768).
  24. Kobori, T., Miura, Y., Fukusawa, E., Yamada, T. and Arita, T.Y. (1992), "Development and application of hysteresis steel dampers", Proceedings of the 10th World Conference on Earthquake Engineering, Rotterdam, Netherlands.
  25. Kurata, M., He, L.S. and Nakashima, M. (2015), "Steel slit shear walls with double-tapered links capable of condition assessment", Earthq. Eng. Struct. Dyn., 44(8), 1271-1287. https://doi.org/10.1002/eqe.2517.
  26. Lee, C.H., Lho, S.H., Kim, D.H., Oh, J. and Ju, Y.K. (2016), "Hourglass-shaped strip damper subjected to monotonic and cyclic loadings", Eng. Struct., 119, 122-134. https://doi.org/10.1016/j.engstruct.2016.04.019.
  27. Lin, Y.C., Sause R. and Ricles, J.M. (2013a), "Seismic performance of a large-scale steel self-centering moment-resisting frame: MCE hybrid simulations and quasi-static pushover tests", J. Struct. Eng., 139(7), 1227-1236. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000661.
  28. Lin, Y.C., Sause, R. and Ricles, J.M. (2013b), "Seismic performance of steel self-centering, moment-resisting frame: hybrid simulations under design basis earthquake", J. Struct. Eng., 139(11), 1823-1832. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000745.
  29. Lu, X., Xu, H., Zhang, X. and Xie, L. (2023), "Experimental investigation on seismic performance of self-centering frictional cast-in-situ beam-column joints", Eng. Struct., 285, 116062. https://doi.org/10.1016/j.engstruct.2023.116062.
  30. Ma, X., Borchers, E., Pena, A., Krawinkler, H., Billington, S. and Deierlein, G.G. (2010), "Design and behavior of steel shear plates with openings as energy dissipating fuses", Research Report No. 173, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, USA.
  31. Mahin, S.A. (1998), "Lessons from damage to steel buildings during the Northridge earthquake", Eng. Struct., 20(4-6), 261-270. https://doi.org/10.1016/S0141-0296(97)00032-1.
  32. Nakashima, M.C., Roeder, W. and Maruoka, Y. (2000), "Steel moment frames for earthquakes in United States and Japan", J. Struct. Eng., 126(8), 861-868. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(861).
  33. Ricles, J.M., Sause, R., Garlock, M.M. and Zhao, C. (2001), "Posttensioned seismic-resistant connections for steel frames", J. Struct. Eng., 127(2), 113-121. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(861).
  34. Ricles, J.M., Sause, R., Peng, S.W. and Lu, L.W. (2002), "Experimental evaluation of earthquake resistant posttensioned steel connections", J. Struct. Eng., 128(7), 850-859. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(850).
  35. Rojas, P., Ricles, J.M. and Sause, R. (2005), "Seismic performance of post-tensioned steel moment resisting frames with friction devices", J. Struct. Eng., 131(4), 529-540. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(529).
  36. Rousta, A.M., Gorji Azandariani, M., Ardakani, M.A.S. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047.
  37. Tsai, K.C., Chou, C.C., Lin, C.L., Chen, P.C. and Jhang S.J. (2008), "Seismic self-centering steel beam-to-column moment connections using bolted friction devices", Earthq. Eng. Struct. Dyn., 37(4), 627-645. https://doi.org/10.1002/eqe.779.
  38. Vasdravellis, G., Karavasilis, T.L. and Uy, B. (2012), "Large-scale experimental validation of steel posttensioned connections with web hourglass pins", J. Struct. Eng., 139(6), 1033-1042. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000696.
  39. Vaziri, E., Gholami, M. and Gorji Azandariani, M. (2021), "The wall-frame interaction effect in corrugated steel plate shear walls systems", Int. J. Steel Struct., 21, 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
  40. Wolski, M., Ricles, J.M. and Sause, R. (2009), "Experimental study of a self-centering beam-column connection with bottom flange friction device", J. Struct. Eng., 135(5), 479-488. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000006.
  41. Wang, C.L., Liu, Y., Zheng, X.L. and Wu, J. (2019), "Experimental investigation of a precast concrete connection with all-steel bamboo-shaped energy dissipaters", Eng. Struct., 178, 298-308. https://doi.org/10.1016/j.engstruct.2018.10.046.
  42. Wang, H.S., Marino, E.M., Pan, P., Liu, H., Nie, X. (2018), "Experimental study of a novel precast prestressed reinforced concrete beam-to-column joint", Eng. Struct., 156, 68-81. https://doi.org/10.1016/j.engstruct.2017.11.011.
  43. Yu, Y.L., Yang, Y., Xue, Y.C., Wang, N.N., Liu, Y.P. (2020), "Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates", Struct. Eng. Mech., 75(6), 675-684. http://dx.doi.org/10.12989/sem.2020.75.6.675.
  44. Zhang, Y.X., Li, Q.G., Zhuge, Y., Liu, A.R. and Zhao, W.Z. (2019), "Experimental study on spatial prefabricated self-centering steel frame with beam-column connections containing bolted web friction devices", Eng. Struct., 195, 1-21. https://doi.org/10.1016/j.engstruct.2019.05.085.