• Title/Summary/Keyword: Moment Formulation

Search Result 126, Processing Time 0.031 seconds

Experimental and analytical behaviour of composite slabs

  • Lopes, Emanuel;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.361-388
    • /
    • 2008
  • The Eurocode 4 presents some negative aspects in the design of composite slabs by the m-k Method or the Partial Connection Method. On one hand, the component chemical adherence is not accounted for in the connection between the profiled steel sheet and the concrete. On the other hand, the application of these methods requires some fitting parameters that must be determined by full scale tests. In this paper, the Eurocode 4 methods are compared with a method developed at the Federal Polytechnic School of Lausanne, based on pullout tests, which can be a valid alternative. Hence, in order to calculate the necessary parameters for the three methods, several tests have been performed such as the full scale test described in Eurocode 4 and pull-out tests. This last type of tests is of small dimensions and implicates lower costs. Finally, a full-scale test of a steel-concrete composite slab with a generic loading is presented, with the goal of verifying the analytical formulation.

Dimensionless analysis of composite rectangular and circular RC columns

  • Massumi, Ali;Badkoubeh, Alireza
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.327-348
    • /
    • 2015
  • A numerical procedure is presented that provides ultimate curvature and moment domains for composite rectangular and circular cross-sections of reinforced concrete columns with or without an embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel section. A dimensionless formula is proposed that can be used for any section with similar normalized geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section (resistance load and moments) is calculated separately so that the influence of each geometric or mechanical parameter on the bearing capacity can be investigated separately.

Development of Decision Support System for the Design of Steel Frame Structure (강 프레임 구조물 설계를 위한 의사 결정 지원 시스템의 개발)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.29-41
    • /
    • 2007
  • Structural design, like other complex decision problems, involves many trade-offs among competing criteria. Although mathematical programming models are becoming increasingly realistic, they often have design limitations, that is, there are often relevant issues that cannot be easily captured. From the understanding of these limitations, a decision-support system is developed that can generate some useful alternatives as well as a single optimum value in the optimization of steel frame structures. The alternatives produced using this system are "good" with respect to modeled objectives, and yet are "different," and are often better, with respect to interesting objectives not present in the model. In this study, we created a decision-support system for designing the most cost-effective moment-resisting steel frame structures for resisting lateral loads without compromising overall stability. The proposed approach considers the cost of steel products and the cost of connections within the design process. This system makes use of an optimization formulation, which was modified to generate alternatives of optimum value, which is the result of the trade-off between the number of moment connections and total cost. This trade-off was achieved by reducing the number of moment connections and rearranging them, using the combination of analysis based on the LRFD code and optimization scheme based on genetic algorithms. To evaluate the usefulness of this system, the alternatives were examined with respect to various design aspects.

Drift Design Method of Steel Moment Frames by using Column-Beam Strength Ratios and Unit-Load Method (기둥-보 휨강도비와 단위하중법을 이용한 철골모멘트골조의 강성설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.

Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants (상호 상관관계가 있는 다중 재료상수의 불확실성에 의한 평면구조의 확률론적 거동)

  • Noh Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.291-302
    • /
    • 2005
  • Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures (구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소)

  • Kim, Ki Du;Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.447-455
    • /
    • 2006
  • A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Direct Solution of Structural Rigid Frames with Sidesway (절점이동(節點移動)이 있는 구조강절(構造剛節) 뼈대의 직접해법(直接解法))

  • Yang, Chang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.91-105
    • /
    • 1992
  • For the analysis of multistory frames with sidesway, no adequate procedures can be found in the classical methods of structural analysis. Even well-known procedures such as the slope-deflection method and the moment distribution method may not be effective tools since those methods require a multiple of computational labor and/or yield results of approximate values. In this study, a direct method is developed and proposed for the analysis of multistory frames with sidesway, which is due to the lateral loads, asymmetry of the structure itself, or asymmetry of vertical loadings. The proposed method is to obtain simple forms of equations derived by a mathematical formulation of the moment distribution procedure combined with successive correction concept. Numerical illustrations show that the results obtained by the proposed method agree well with those by rigorous ones. Undoubtedly, this newly developed method can be applied more easily for the analysis of structural frames without joint translation as well as continuous beams.

  • PDF

FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams (합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • A numerical model to simulate bond-slip behavior of composite beam bridges is introduced in this paper. Assuming a linear bond stress-slip relation along the interface between the slab and girder, the slip behavior is implemented into a finite element formulation. Adopting the introduced model, the slip behavior can be taken account even in a beam element which is composed of both end nodes only. Governing equation of the slip behavior, based on the linear partial interaction theory, can be determined from the force equilibrium and a constant curvature distribution across the section of a composite beam. Since the governing equation for the slip behavior requires the moment values at both end nodes, the piecewise linear distribution of the constant bending moment in an element is assumed. Analysis results by the model are compared with numerical results and experimental values, and load-displacement relations of composite beams were then evaluated to verify the validity of the proposed model.

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.