• 제목/요약/키워드: Moment Formulation

검색결과 126건 처리시간 0.023초

Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode Loading : Formulation (I)

  • Jang Insik;Sankar Bhavani V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.567-577
    • /
    • 2005
  • Several methods for improving the interlaminar strength and fracture toughness of composite materials are developed. Through-the-thickness stitching is considered one of the most common ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness and moderately improves the Mode II fracture toughness. An analytical model has been developed for simulating the behavior of stitched double cantilever beam specimen under various loading conditions. For z-directional load and moment about the y-axis the numerical solutions are compared with the exact solutions. The derived formulation shows good accuracy when the relative error of displacement and rotation between numerical and exact solution were calculated. Thus we can use the present model with confidence in analyzing other problems involving stitched beams.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.

유한요소법을 이용한 축대칭 구조물의 비선형 거동해석 (Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method)

  • 구영덕;민경탁
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

Finite element formulation and analysis of Timoshenko beam excited by transversely fluctuating supports due to a real seismic wave

  • Kim, Yong-Woo;Cha, Seung Chan
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.971-980
    • /
    • 2018
  • Using the concept of quasi-static decomposition and using three-noded isoparametric locking-free element, this article presents a formulation of the finite element method for Timoshenko beam subjected to spatially different time-dependent motions at supports. To verify the validity of the formulation, three fixed-hinged beams excited by the real seismic motions are examined; one is a slender beam, another is a stocky one, and the other is an intermediate one. The numerical results of time histories of motions of the three beams are compared with corresponding analytical solutions. The internal loads such as bending moment and shearing force at a specific time are also compared with analytic solutions. These comparisons show good agreements. The comparisons between static components of the internal loads and the corresponding total internal loads show that the static components predominate in the stocky beam, whereas the dynamic components predominate in the slender one. Thus, the total internal loads of the stocky beam, which is governed by static components, can be predicted simply by static analysis. Careful numerical experiments indicate that the fundamental frequency of a beam can be used as a parameter identifying such a stocky beam.

Added effect of uncertain geometrical parameter on the response variability of Mindlin plate

  • Noh, Hyuk Chun;Choi, Chang Koon
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.477-493
    • /
    • 2005
  • In case of Mindlin plate, not only the bending deformation but also the shear behavior is allowed. While the bending and shear stiffness are given in the same order in terms of elastic modulus, they are in different order in case of plate thickness. Accordingly, bending and shear contributions have to be dealt with independently if the stochastic finite element analysis is performed on the Mindlin plate taking into account of the uncertain plate thickness. In this study, a formulation is suggested to give the response variability of Mindlin plate taking into account of the uncertainties in elastic modulus as well as in the thickness of plate, a geometrical parameter, and their correlation. The cubic function of thickness and the correlation between elastic modulus and thickness are incorporated into the formulation by means of the modified auto- and cross-correlation functions, which are constructed based on the general formula for n-th joint moment of random variables. To demonstrate the adequacy of the proposed formulation, a plate with various boundary conditions is taken as an example and the results are compared with those obtained by means of classical Monte Carlo simulation.

교차되는 스트립 라인구조에서의 빠른 커패시턴스 계산기법 (Fast Calculation of Capacitance Matrix for Strip-Line Crossings and Other Interconnects)

  • ;이동준;심덕선;양철관;김형규;김형석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권10호
    • /
    • pp.539-545
    • /
    • 2004
  • In this paper, we consider the problem of capacitance matrix calculation for strip-line and other interconnects crossings. The problem is formulated in the spectral domain using the method of moments. Sinc-functions are employed as basis functions. Conventionally, such a formulation leads to a large, non-sparse system of linear equations in which the calculation of each of the coefficient requires the evaluation of a Fourier-Bessel integral. Such calculations are computationally very intensive. In the method proposed here, we provide simplified expressions for the coefficients in the moment method matrix. Using these simplified expressions, the coefficients can be calculated very efficiently. This leads to a fast evaluation of the capacitance matrix of the structure. Computer simulations are provided illustrating the validity of the method proposed.

비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석 (SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS)

  • 김동현
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

접선하중과 비틀림모멘트를 받는 직교이방성 마찰조건의 정지미끄럼접촉 해석 (Analysis of Incipient Sliding Contact with Orthotropic Friction Condition Subjected to Tangential Load and Twisting Moment)

  • 이성철;곽병만;권오관
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2026-2038
    • /
    • 1994
  • A numerical scheme is developed for the analysis of incipient sliding contact with orthotropic friction condition subjected to tangential load and twisting moment. The inherent nonlinearity in the orthotropic friction law has been treated by a polyhedral friction law. Then, a three-dimensional linear complementarity problem(LCP) formulation in an incremental form is obtained, and the existence of a solution is investigated. A Lemke's complementary pivoting algorithm is used for solving the LCP. The scheme is illustrated by spherical contact problems, and the effects of eccentricity of elliptical friction domain on the traction and stick region are discussed.

Application of the Boundary Element Method to Finite Deflection of Elastic Bending Plates

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The present study deals with an approximate integral equation approach to finite deflection of elastic plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the development of boundary element technique are reviewed. A computer program for solving for stresses and deflections in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of deflection and moment is employed in this program. The deflections and moments are assumed constant within the quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method, are presented and results are compared with known solutions.