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a b s t r a c t

Using the concept of quasi-static decomposition and using three-noded isoparametric locking-free
element, this article presents a formulation of the finite element method for Timoshenko beam sub-
jected to spatially different time-dependent motions at supports. To verify the validity of the formulation,
three fixed-hinged beams excited by the real seismic motions are examined; one is a slender beam,
another is a stocky one, and the other is an intermediate one. The numerical results of time histories of
motions of the three beams are compared with corresponding analytical solutions. The internal loads
such as bending moment and shearing force at a specific time are also compared with analytic solutions.
These comparisons show good agreements. The comparisons between static components of the internal
loads and the corresponding total internal loads show that the static components predominate in the
stocky beam, whereas the dynamic components predominate in the slender one. Thus, the total internal
loads of the stocky beam, which is governed by static components, can be predicted simply by static
analysis. Careful numerical experiments indicate that the fundamental frequency of a beam can be used
as a parameter identifying such a stocky beam.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The piping in nuclear power plants would experience different
motions at its ends during an earthquake if the ends or supports are
connected to different main structures. The vibration of the pipe
can be treated as the transverse vibration problem of a beam
excited by motions at supports when the effect of fluid flow is
neglected.

To solve the time-dependent boundary value problems, Mindlin
and Goodman [1] developed the solution procedure called “the
method of quasi-static decomposition.” They applied it to the
problem of the transverse vibrations of EulereBernoulli beams
with time-dependent boundary conditions. Since then, many in-
vestigators have applied it to the analysis of structures subjected to
multiple support motions or seismic excitations via various ap-
proaches, such as time history analysis, response spectrummethod
of analysis, or frequency-domain spectral analysis [2e9].

Authors [4,7,10e12] formulated the finite element (FE) dynamic
analysis of EulereBernoulli beams excited by transversely

fluctuating support motions. However, a flexible connecting rod,
some robotic manipulators, or some pipes betweenmain structures
in nuclear power plants are not slender beams but rather stocky
ones. They are often excited by the motions transmitted from
connections or supports inmain structures or foundation. Thus, it is
necessary to develop FE formulation based on Timoshenko beam
theory (TBT). However, the investigations for FE formulation of
Timoshenko beams subjected to transversely fluctuating support
motions are hardly found. As for the analytic solutions of Timo-
shenko beam excited by transverse support motions, there are not
so many articles compared with those concerning analytic solu-
tions of EulereBernoulli beam, either. Lee and Lin [13] presented a
solution procedure for elastically restrained nonuniform Timo-
shenko beams by generalizing the quasi-static decomposition
method. They [14] also proposed an accurate solution procedure for
the forced vibration of a pretwisted Timoshenko beam with time-
dependent elastic boundary conditions by using the Mind-
lineGoodman's quasi-static decomposition method. Kim [15,16]
presented the procedure to obtain the responses of Timoshenko
beam excited by support motions by using the expansion theorem
based on the orthogonality property of eigenfunctions and also
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presented the analytic solutions of fixedefixed Timoshenko beam
excited by real seismic support motions.

In this study, FE formulation for the dynamic analysis of Timo-
shenko beam excited by spatially different, transversely fluctuating
support motions is presented by using the quasi-static decompo-
sition method. To verify the formulation, FE analysis of the three
beams, which are a slender beam, a stocky beam, and an inter-
mediate one, subjected to real seismic time histories of acceleration
at supports are performed, and the results are compared with an-
alytic solutions based on the TBT, which are obtained by using the
same manner as in the studies by Kim [15] and [16]. The compar-
isons show good agreements. The static components of bending
moment and shearing force of the three beams are also compared
with the corresponding total quantities at specific instants at which
maximal magnitudes of bending moment and shearing force occur
during the excitation. The comparison shows that the static com-
ponents of the internal loads predominate in the stocky beam,
whereas the dynamic components predominate in the slender one.
Through careful numerical experiments of nine groups of beams, a
parameter identifying which beam is governed by static compo-
nents is introduced to predict the behavior of such static compo-
nentedominated beams (or simply, SCD beam) simply by static
analysis, without dynamic analysis.

2. FE formulation

Themotion of Timoshenko beamwith a uniform cross section in
Fig. 1, which is excited by support displacements a(t) and b(t), is
described as the following differential equations and boundary
conditions.

8
<
:

rA€y� kGA
�
y;xx � q;x

�
¼ 0

rI€q� EIq;xx � kGA
�
y;x � q

�
¼ 0

(1)

with the support motions

yðx; tÞjx¼0 ¼ aðtÞ; yðx; tÞjx¼L ¼ bðtÞ; qðx; tÞjx¼0 ¼ 0;

q;xðx; tÞ
��
x¼L ¼ 0

(2)

where y(x, t) is the transverse displacement and q(x, t) is the rota-
tional displacement of a cross section. In Eq. (1), a superimposed
dot denotes a differentiationwith respect to t, and the subscript of x
stands for a differentiation with respect to x. EI, rA, G, and k denote
the flexural rigidity, mass per unit length, shear modulus, and the
shear coefficient, respectively. In Eq. (2), a(t) and b(t) denote the
prescribed support displacements at the left end and the right end,
respectively, and L is the length of the beam.

The free-body sketch in Fig. 2 shows the sign convention of the
bending moment and the shearing force. The sign convention will
be used in FE formulation later in this article tomatch up the sign of
analytic solutions and the sign of FE solutions. Based on the TBT, the
structural loads, M(x, t) and Q(x, t), are expressed as

Mðx; tÞ ¼ EIq;x
Qðx; tÞ ¼ kGA

�
y;x � q

� (3)

According to themethod of quasi-static decomposition, the total
displacements y(x, t) and q(x, t) are written as the sum of a static
component and a dynamic component, respectively, as follows:

fug ¼ fusg þ fudg (4)

where

fug ¼
�
yðx; tÞ
qðx; tÞ

�
; fusg ¼

�
ysðx; tÞ
qsðx; tÞ

�
; fudg ¼

�
wðx; tÞ
fðx; tÞ

�

(5)

and ys and qs are static displacements; w and f are dynamic
displacements.

2.1. Static displacements

The static displacements, ys and qs, should satisfy the following
static governing equations and the support conditions in Eq. (2)

8
<
:

kGA
�
ys;x � qs

�
;x
¼ 0

EIqs;xx þ kGA
�
ys;x � qs

�
¼ 0

(6)

Solving Eq. (6) directly by using the support conditions, we can
obtain the static displacements

ysðx; tÞ ¼ bðtÞ � aðtÞ
gþ L2

�
3

�
�

x3

6L
þ x2

2
þ g

L
x
	
þ aðtÞ (7)

qsðx; tÞ ¼ bðtÞ � aðtÞ
gþ L2

�
3

�
�

x2

2L
þ x

	
(8)

where g ¼ EI=kGA: The static components of the bending moment
and the shearing force are

MSTATIC ¼ EI
gþ L2

�
3

�x
L
þ 1

�
$fbðtÞ � aðtÞg

�
(9)

QSTATIC ¼ EI

gþ L2

�
3
�
L
$fbðtÞ � aðtÞg (10)

2.2. Dynamic displacements

Using Eqs. (4) to (6), we can express Eq. (1) in terms of the dy-
namic displacements, w(x, t) and fðx; tÞ; as

(
rA €w� kGA



w;xx � f;x

� ¼ gsyðx; tÞ
rI€f� EIf;xx � kGA



w;x � f

� ¼ gsqðx; tÞ
(11)

Fig. 1. A fixed-hinged beam subjected to the prescribed displacements a(t) at the left
support and b(t) at the right support.

Fig. 2. Free-body sketch of a beam element of length dx.
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where

gsyðx; tÞ ¼ �rA€ysðx; tÞ (12)

gsqðx; tÞ ¼ �rI€qsðx; tÞ (13)

which are the inertial loadings per unit length.
The boundary conditions in Eq. (2) are also changed to the

following boundary condition according to Eq. (4).

wðx; tÞjx¼0 ¼ 0; wðx; tÞjx¼L ¼ 0; fðx; tÞjx¼0 ¼ 0;

f;xðx; tÞ
��
x¼L ¼ 0

(14)

The corresponding kinetic energy (T), deformation energy (V),
and work done (W) of the beam described by Eq. (11) are

T ¼ rI
2

ZL

0



_f
�2
dxþ rA

2

ZL

0

ð _wÞ2dx (15)

V ¼ EI
2

ZL

0



f;x

�2dxþ kGA
2

ZL

0



w;x � f

�2dx (16)

W ¼
ZL

0

gsyðx; tÞwdxþ
ZL

0

gsqðx; tÞf dx (17)

By employing the three-noded isoparametric element in Fig. 3,
we assume the dynamic displacements of an element (e) as follows

wðeÞðx; tÞ ¼ ½Nw�
n
uðeÞd

o
(18)

fðeÞðx; tÞ ¼ �
Nf

n
uðeÞd

o
(19)

where

½Nw� ¼ ½N1 0 N2 0 N3 0 � (20)

�
Nf

 ¼ ½0 N1 0 N2 0 N3 � (21)

The dynamic displacement vector, fuðeÞd g, in Eqs. (18) and (19) is
defined as

n
uðeÞd

oT ¼
h
wðeÞ

1 f
ðeÞ
1 wðeÞ

2 f
ðeÞ
2 wðeÞ

3 f
ðeÞ
3

i
(22)

The shape functions, Ni (i ¼ 1, 2, 3), in Eqs. (22) and (23) are

N1 ¼ 1
2

�
x2 � x

�
; N2 ¼ 1� x2; N3 ¼ 1

2

�
x2 þ x

�
(23)

where x is an elemental coordinate or natural coordinate as shown
in Fig. 3.

The FE equation of the beam under consideration can be ob-
tained by introducing T, V, and W in Eqs. (15)e(17) in Hamilton's
principle:

h
bmðeÞin€uðeÞd

o
þ
h
bk
ðeÞin

uðeÞd

o
¼

n
bgðeÞ

o
(24)

where

h
bmðeÞi ¼

Z1

�1

rI
�
Nf

T�Nf

jJjdxþ
Z1

�1

rA½Nw�T ½Nw�jJjdx (25)

h
bk
ðeÞi ¼

Z1

�1

EI

h
Nf;x

iT

jJj

h
Nf;x

i

jJj jJjdx

þ
Z1

�1

kGA
�
h
Nw;x

i

jJj � �
Nf

	T�
h
Nw;x

i

jJj � �
Nf

	jJjdx

(26)

and

n
bgðeÞ

o
¼ �

Z1

�1

�
Nf

TgðeÞsq ðx; tÞjJjdx�
Z1

�1

½Nw�TgðeÞsy ðx; tÞjJjdx:

(27)

In Eqs. (25)e(27), jJj is Jacobian determinant and ½Nf� is defined
as

�
Nf

 ¼ �
0 N1 0 N2 0 N3


(28)

where Ni(i ¼ 1, 2, 3) are

N1 ¼ 1
2

�
1
3
� x

	
; N2 ¼ 2

3
; N3 ¼ 1

2

�
1
3
þ x

	
(29)

These shape functions are the modified ones devised to avoid
shear locking [17].

2.3. Total displacements

Let us introduce the following total displacement vector of an
element (e),

n
uðeÞ

oT ¼
h
yðeÞ1 q

ðeÞ
1 yðeÞ2 q

ðeÞ
2 yðeÞ3 q

ðeÞ
3

i
(30)

The nodal displacements in Eq. (30) are depicted in Fig. 3.
Using Eq. (4), the total displacement vector is expressed as

n
uðeÞ

o
¼

n
uðeÞs

o
þ
n
uðeÞd

o
(31)

where fuðeÞs g is the static displacement vector defined as

n
uðeÞs

oT ¼
h
yðeÞs1 q

ðeÞ
s1 yðeÞs2 q

ðeÞ
s2 yðeÞs3 q

ðeÞ
s3

i
(32)

The entities of fuðeÞs g are easily calculated by using Eqs. (7) and
(8).

Using the relation in Eq. (31), we rewrite the FE Eq. (24) in terms
of the total displacement vector asFig. 3. Nodal variables in an element (e) of length l.
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h
bmðeÞin€uðeÞ

o
þ
h
bk
ðeÞin

uðeÞ
o
¼

h
bmðeÞin€uðeÞs

o
þ
h
bk
ðeÞin

uðeÞs

o

þ
n
bgðeÞ

o

(33)

3. Numerical experiments and discussions

To validate the present formulation, we illustrate the vibration
of Timoshenko beam which is initially at rest and then is excited
by spatially different support motions. The first 10 s of the El
Centro earthquake accelerogram (E-W component, 1940) have
been used as input support motions. To model spatially different
support excitations, the support accelerations, €aðtÞ and €bðtÞ, are
assumed as shown in Fig. 4, i.e., the time delay is assumed as
0.1 second.

For numerical tests and verifications, the three beams in Table 1
are used. The three models have the same hollow circular cross
section. The input data for the beams are as follows: r ¼ 7860 kg/
m3, E ¼ 200 GPa, and Poisson's ratio n ¼ 0.3. The shear coefficient k
[18] is

k ¼ 6


1þm2�2ð1þ nÞ

7þ 34m2 þ 7m4 þ 12n


1þ 4m2 þm4

�þ 4n


1þ 4m2 þm4

�

(34)

where m ¼ ri/ro.
We used the Newmark method with time step

Dt ¼ 2.5 � 10�4 second to integrate the FE equation of motion.
Because the El Centro earthquake accelerogram consisted of
discrete time history acceleration data points recorded every
0.02 second, we assumed piecewise linear accelerations between
the neighboring data [16].

The convergence of FE results in terms of number of elements is
shown in Fig. 5 with analytic solutions. Because the FE results
converge sufficiently with 10 equal-sized FE elements as shown in
Fig. 5, all the beams are discretized with 10 equal-sized FE elements
throughout in this article. The analytic solutions are obtained by using
the expansion theorem based on TBT, in which 20 modes are used.

The FE results of the three beams are compared with corre-
sponding analytical solutions in Figs. 6e11. Figs. 6, 8, and 10 show
the linear motions (y; _y, and €y) and the angular motions (q; _q, and €q)
at the midpoint of the beams. These figures show that the FE results
of motions agree with the corresponding analytical solutions based
on the TBT.

The total quantities of displacement, rotation angle, bending
moment, and shearing force along the beam length at specific in-
stants are plotted in Figs. 7, 9, and 11, together with analytic solu-
tions and static quantities. The specific times are the instants at
which the maximal magnitude of shearing force occurs during the
forced vibration. The maximal magnitude of the shearing force
occurs at t¼ 6.39 second in the slender beam, t¼ 8.44 second in the
intermediate beam, and t ¼ 2.19 second in the stocky beam. The FE
results of the total quantities show good agreements with the
corresponding analytic solutions. The static components of
displacements ys and qs are calculated by Eqs. (7) and (8), and the
static component of internal loadsMSTATIC and QSTATIC are calculated
by Eqs. (9) and (10), respectively. Comparing the static components
and the corresponding total quantities (FEM or Analytic) in Figs. 7,
9, and 11, we can observe the following facts:

▪ The maximal magnitudes of jytotal � ysj and jqtotal � qsj become
smaller as the beam length decreases, and the static
displacements ys and qs of the stocky beam approach the total
displacement and the total rotation, respectively.

▪ The values of MSTATIC and QSTATIC go near the corresponding total
quantities Mtotal and Qtotal respectively, as the beam length de-
creases. In the slender beam, the magnitudes of MSTATIC and
QSTATIC are very small compared with the magnitudes of the
corresponding total quantities. But, in the stocky beam, the
static parts of the internal loads are very close to those of the
total loads.

From the above observations, we see that the displacements and
internal loads of the stocky beam are governed by their static
components, whereas those of the slender beam are governed by
dynamic components. Therefore, the behavior of SCD beam can be
predicted simply by static analysis, without dynamic analysis. Thus,
the following measures to identify SCD beam are introduced.

RMM ¼ MSTATIC

Mtotal
and RQQ ¼ QSTATIC

Qtotal
(35)

where RMM is calculated at the location and time the maximal
magnitude of jMtotalj occurs and RQQ at the location and instant the
maximal magnitude of jQtotalj occurs during the support fluctua-
tions. It is expected that these measures approach 1 for SCD beams
and go to zero for dynamic componentedominated beams.

According to the author's experience, the higher the funda-
mental frequency (U) of a beam is and the smaller the slenderness
ratio (s ¼ L/r, where r is a radius of gyration) is, the more dominant
the static components become. Thus, if there exists a certain suit-
able parameter to identify the SCD beam, the feature of the SCD
beam can be used in a structural design. To find such a suitable
parameter, numerical experiments for the nine groups of fixed-
hinged beams in Table 2 are performed by using the entire El Centro

Fig. 4. The prescribed time histories of acceleration at supports. (A) €aðtÞ at the left end.
(B) €bðtÞ at the right end.

Table 1
Three verification models.

Models Beam length Cross section

Slender beam 20 m Hollow circular section
with outer radius ro ¼ 0.1 m
and inner radius ri ¼ 0.07 m

Intermediate beam 12 m
Stocky beam 2 m
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Fig. 6. Time histories of motions of the slender beam at the midpoint, x ¼ 10 m.
FEM, finite element method.
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earthquake accelerogram (E-W component, 1940) as input support
motions. The shear coefficients of hollow circle, solid circle, and
thin-walled hollow circle in Table 2 are calculated by Eq. (34) and
those of rectangular sections are calculated by the following
equation [18].

k ¼ 10ð1þ nÞ
12þ 10n� 180n2

1þn

�
b
h

�4 P∞

n¼1

np�ðb=hÞtanhðnph=bÞ
ðnpÞ5

(36)
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Fig. 7. Displacement, rotation, bending moment, and shearing force of the slender beam when t ¼ 6.39 second.
FEM, finite element method.
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Fig. 8. Time histories of motions of the intermediate beam at the midpoint, x ¼ 6 m.
FEM, finite element method.
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where b and h denote width and height of a rectangular section,
respectively.

The measures of RMM and RQQ in terms of 1/s and fundamental
frequency of beams (UTBT) are plotted in Figs. 12 and 13, respec-
tively. Fig. 12 does not show a consistent relation between the
measures and 1/s in the entire nine groups although the measures
of each group increase as 1/s increases. Thus, the parameter of 1/s is

not a suitable one for identification of the SCD beam. Fig. 13 shows
more consistent relations between the measures and fundamental
frequency (UTBT) than the relations in Fig. 12. The frequencies (UTBT)
in Fig. 13 are obtained by FE eigenvalue analysis based on the TBT.

From Fig. 13, following two facts can be observed; one is that
RMM � 0.9 when UTBT > 65 rad/sec, and the other one is that RQQ �
0.9 when UTBT > 100 rad/sec. Thus, the fundamental frequency
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Fig. 9. Displacement, rotation, bending moment, and shearing force of the intermediate beam when t ¼ 8.44 second.
FEM, finite element method.
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FEM, finite element method.
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Fig. 11. Displacement, rotation, bending moment, and shearing force of the stocky beam when t ¼ 2.19 second.
FEM, finite element method.

Table 2
Nine groups of fixed-hinged beams for numerical experiments.

Materials Designations Cross section Beam length L [m] Input data

Steel beams S, HolCir Hollow circle;
ro ¼ 0.1 m, ri ¼ 0.07 m, k ¼ 0.592212

4.0, 4.5, 5.0, 5.5, 6.0,
6.5, 7.0, 7.5, 8.0, 8.5,
9.0, 9.5, 10.0, 12.0,
14.0, 16.0, 18.0, 20.0

E ¼ 200 GPa, r ¼ 7860 kg/m3, n ¼ 0.3,
TD ¼ 0.1 s

S, SolCir Solid Circle;
ro ¼ 0.1 m, ri ¼ 0.0 m, k ¼ 0.925182

S, ThinHolCir Thin walled hollow circle;
ro ¼ 0.1 m, ri ¼ 0.09 m, k ¼ 0.567651

Copper beams C, HolCir Hollow circle;
ro ¼ 0.1 m, ri ¼ 0.07 m, k ¼ 0.592212

E ¼ 120 GPa, r ¼ 8900 kg/m3, n ¼ 0.34,
TD ¼ 0.1 s

C, SolCir Solid Circle;
ro ¼ 0.1 m, ri ¼ 0.0 m, k ¼ 0.925182

C, ThinHolCir Thin-walled hollow circle;
ro ¼ 0.1 m, ri ¼ 0.09 m, k ¼ 0.567651

Steel beams S, Rec (h ¼ 0.01 m) Rectangle;
b � h ¼ 0.01 m � 0.01 m, k ¼ 0.872272

0.9, 1.0, 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8,
1.9, 2.0, 2.5, 3.0, 4.0

E ¼ 200 GPa, r ¼ 7860 kg/m3, n ¼ 0.3,
TD ¼ 0.1 s

S, Rec (h ¼ 0.05 m) Rectangle;
b � h ¼ 0.01 m � 0.05 m, k ¼ 0.866679

2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, 5.5, 6.0, 6.5
7.0, 7.5, 8.0, 9.0, 10.0

S, Rec (h ¼ 0.10 m) Rectangle;
b � h ¼ 0.01 m � 0.10 m, k ¼ 0.866667

3.0, 3.5, 4.0, 4.25, 4.5,
4.75, 5.0, 5.5, 6.0, 6.5,
7.0, 8.0, 9.0, 10.0, 14.0

TD, time delay.
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Fig. 12. RMM and RQQ in terms of 1/s.

Y.-W. Kim, S.C. Cha / Nuclear Engineering and Technology 50 (2018) 971e980978



should be greater than 100 rad/sec for both RMM and RQQ to be
greater than 0.9, simultaneously. Based on the numerical results,
the SCD beam can be defined as a beam with fundamental fre-
quency greater than 100 rad/sec.

In Fig. 12, the values of 1/s of the most beams are less than 0.01.
This implies that most of the beams with fundamental frequencies
less than 100 rad/sec are slender ones. Thus, the fundamental fre-
quency of EulereBernoulli beam (UEBT) can be used instead of the
fundamental frequency of Timoshenko beam (UTBT). The funda-
mental frequency based on EulereBernoulli beam theory is given
by

UEBT ¼ l2
ffiffiffiffiffiffiffiffi
E=r

p

sL
(37)

where l ¼ 3.92660231 for the fixed-hinged beam [19]. Using the
UEBT, we replot Fig. 13 in Fig. 14. Comparing Fig. 14 with Fig. 13
shows that it is possible to identify the SCD beams by UEBT. Using
UEBT in Eq. (37) is more convenient than using the fundamental
frequency of Timoshenko beam because UEBT can be calculated
easily by the basic data, E, r, s, and L, without eigenvalue analysis.

In addition, it is noteworthy that the magnitudes of the bending
moment and shearing force of the SCD beam are nearly propor-
tional to the magnitude of the difference of support motions, i.e.,
ja(t)-b(t)j, and that the maximal magnitudes of the structural loads
occur at the instant that the difference of support motions is
maximum during support excitation, which can be recognized
clearly from Eqs. (9) and (10) [16].

In summary, once we know the fundamental frequency of fixed-
hinged beam subjected to transversely fluctuating support mo-
tions, we can recognize whether the beam is the SCD beam or not
by using its fundamental frequency. If a beam belongs to the SCD
beam, it is possible to analyze the beam simply by static analysis
without dynamic analysis and to predict when and where maximal
bending moment and shearing force occur. To generalize the
fundamental frequency as the parameter identifying the SCD beam,
further numerical experiments on other beams with different
boundary conditions are required.

4. Conclusions

With the three-noded isoparametric Timoshenko beam
element, the formulation for dynamic analysis of Timoshenko beam
excited by spatially different support motions is presented. Three
kinds of fixed-hinged beams subjected to real seismic motions at
supports are illustrated to check the validity of the present FE
formulation; one is a slender beam, another is a stocky beam, and
the other is an intermediate beam. The FE results of the three
beams show good agreements with the corresponding analytic
solutions. Examination of the FE results of the three beams shows
an interesting fact that the static components predominate in the
stocky beam, whereas the dynamic components predominate in
the slender one. Thus, it is necessary to introduce the concept of
SCD beam to use its feature in a structural analysis and design.
Through numerical experiments of the fixed-hinged beams with
various cross sections and lengths, it is shown that the fundamental

0 100 200 30065

0

0.2

0.4

0.6

0.8

1
0.9

Fundamental frequency  TBT [rad/s]

R
M

M

0 100 200 300

0

0.2

0.4

0.6

0.8

1
0.9

Fundamental frequency  TBT [rad/s]

R
Q

Q

S, HolCir
S, SolCir
S, ThinHolCir
C, HolCir
C, SolCir
C, ThinHolCir
S, Rec(h=0.01m)
S, Rec(h=0.05m)
S, Rec(h=0.10m)

S, HolCir
S, SolCir
S, ThinHolCir
C, HolCir
C, SolCir
C, ThinHolCir
S, Rec(h=0.01m)
S, Rec(h=0.05m)
S, Rec(h=0.10m)

Ω Ω

Fig. 13. RMM and RQQ in terms of the fundamental frequency, UTBT.
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frequency can be used as a suitable parameter to identify the SCD
beam.
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