• 제목/요약/키워드: Molten temperature

검색결과 585건 처리시간 0.029초

Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K

  • Zhitkov, Alexander;Potapov, Alexei;Karimov, Kirill;Shishkin, Vladimir;Dedyukhin, Alexander;Zaykov, Yury
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.123-134
    • /
    • 2020
  • The interaction between UN and CdCl2 in the LiCl-KCl molten eutectic was studied at 773 K. The reaction was controlled by sampling the melt, as well as by analysis of the resulting precipitate. The process was shown to proceed according to several parallel reactions. The summary reaction was determined to have two stages: a fast one and a slow one. The 19-53% UN → UCl3 conversion was obtained for the molar ratio of CdCl2/UN = 1.22-14.9. The rest of UN converts into the precipitate of complex composition (UNCl + U2N3 + U4N7 + UN2). The increase in the CdCl2/UN molar ratio from 1.22 to 14.9 resulted in the decrease in duration of the first "fast" stage of the process from 18 h to 1 h.

고온 용융염에서 Fe기 및 Ni기 초합금의 부식거동 및 합금원소의 영향 (Corrosion Behavior and Effect of Alloying Elements of Fe-base and Ni-base Superalloys on Hot Molten Salt)

  • 조수행;장준선;정명수;오승철;신영준
    • 한국재료학회지
    • /
    • 제9권10호
    • /
    • pp.985-991
    • /
    • 1999
  • Incoloy 800H, KSA (Kaeri Superalloy)-6, Inconel 600 및 Hastelloy C-276 합금의 용융염에서의 부식거동을 650~85$0^{\circ}C$ 온도범위에서 조사하였다. LiCl-Li$_2$O혼합용융염에서의 부식은 Li$_2$O에 의한 염기성 용해 기구에 의해 진행되며, 부식속도가 LiCl에서보다 훨씬 빠르게 나타났다. 혼합용융염 LiCl-Li$_2$O에서는 Ni기 합금의 부식속도가 Fe기 합금보다 빠르고, Mo와 W의 함량이 높은 Hastelloy C-276이 가장 빠른 부식속도를 나타내었다. 용융염 LiCl에서는 LiCrO$_2$의 단일 부식층이 형성되고, LiCl-Li$_2$O 혼합용융염에서는 산화물과 Ni의 2상구조의 다공성 부식층이 형성되었다.

  • PDF

알루미늄 주물 위 용탕열을 이용한 N-Al계 금속간화합물의 연소합성 코팅 (Ni-Al Based Intermetallics Coating Through SHS using the Heat of Molten Aluminum)

  • 이한영;조용재
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.83-86
    • /
    • 2011
  • Ni-Al based intermetallic compounds of self-propagating high-temperature synthesis (SHS) by the heat of molten aluminum and been coated on the aluminum casting alloy. The effects of the pouring temperature in casting and the thickness of casting substrate on SHS of the coating layer have been investigated. The experimental result showed that the reaction of the coating layer was activated with increasing the pouring temperature in casting and the thickness of casting substrate. However, the aluminum substrate was re-melted by the heat of formation for intermetallic compounds. Then, it was considered that some mechanical or thermal treatments for elemental powder mixtures were required to control the heat of formation for intermetallic compounds in advance.

강과 알루미늄의 레이저 접합에 관한 연구 Part 2 : 접합 공정의 열 및 금속간 화합물 성장 해석 (A Study on Laser Joining of Low Carbon Steel and Aluminum Alloy Part 2 : Process Analysis)

  • 박태완;조정호;나석주
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.30-36
    • /
    • 2005
  • In this part, thermal finite element analysis(FEA) is conducted for the experiments in part 1. The molten area of base metals are analyzed by FEA results and compared with experimental ones. Temperature data from FEA results are used to calculate the IMC layer thickness analytically at the interface. IMC layer is established as a function of time and temperature when there is an interaction between solid steel and molten aluminum. The IMC layer thickness is obtained by cumulative computations using the time-temperature data from FEA results.

고온 연료전지 발전단지의 내부계통 고장에 의한 운전환경에 대한 분석 (A Study on the Operation Condition by Electrical Fault in the High Temperature Fuel Cell Plant)

  • 정영환;채희석;김재철;조성민
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.51-59
    • /
    • 2013
  • High temperature fuel cell system, such as molten carbonate fuel cells(MCFC) and solid oxide fuel cells(SOFC), are capable of operating at MW rated power output. The power output change of high temperature fuel cell imposes the thermal and mechanical stresses on the fuel cell stack. To minimize the thermal-mechanical stresses on the stack, increases in the power output of high temperature fuel cell typically must be made at a slow rate. So, the short time interruption of high temperature fuel cell causes considerable generated energy losses. Because of the characteristic of high temperature fuel cell, we analyzed the impact of electrical fault in the fuel cell plant on other fuel cell generators in the same plant site. A various grounding configuration and voltage sag are analyzed. Finally, we presented the solution to minimize the effect of fault on other fuel cell generators.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors

  • Zhang, Heyao;He, Zhao;Song, Jinliang;Liu, Zhanjun;Tang, Zhongfeng;Liu, Min;Wang, Yong;Liu, Xiangdong
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1243-1251
    • /
    • 2020
  • Irradiation-induced damage of binderless nanoporous-isotropic graphite (NPIG) prepared by isostatic pressing of mesophase carbon microspheres for molten salt reactor was investigated by 3.0 MeV He+ irradiation at room temperature and high temperature of 600 ℃, and IG-110 was used as the comparation. SEM, TEM, X-ray diffraction and Raman spectrum are used to characterize the irradiation effect and the influence of temperature on graphite radiation damage. After irradiation at room temperature, the surface morphology is rougher, the increase of defect clusters makes atom flour bend, the layer spacing increases, and the catalytic graphitization phenomenon of NPIG is observed. However, the density of defects in high temperature environment decreases and other changes are not obvious. Mechanical properties also change due to changes in defects. In addition, SEM and Raman spectra of the cross section show that cracks appear in the depth range of the maximum irradiation dose, and the defect density increases with the increase of irradiation dose.

Phase Behavior of the Ternary NaCl-PuCl3-Pu Molten Salt

  • Toni Karlsson;Cynthia Adkins;Ruchi Gakhar;James Newman;Steven Monk;Stephen Warmann
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.55-64
    • /
    • 2023
  • There is a gap in our understanding of the behavior of fused and molten fuel salts containing unavoidable contamination, such as those due to fabrication, handling, or storage. Therefore, this work used calorimetry to investigate the change in liquidus temperature of PuCl3, having an unknown purity and that had been in storage for several decades. Further research was performed by additions of NaCl, making several compositions within the binary system, and summarizing the resulting changes, if any, to the phase diagram. The melting temperature of the PuCl3 was determined to be 746.5℃, approximately 20℃ lower than literature reported values, most likely due to an excess of Pu metal in the PuCl3 either due to the presence of metallic plutonium remaining from incomplete chlorination or due to the solubility of Pu in PuCl3. From the melting temperature, it was determined that the PuCl3 contained between 5.9 to 6.2mol% Pu metal. Analysis of the NaCl-PuCl3 samples showed that using the Pu rich PuCl3 resulted in significant changes to the NaCl-PuCl3 phase diagram. Most notably an unreported phase transition occurring at approximately 406℃ and a new eutectic composition of 52.7mol% NaCl-38.7mol% PuCl3-2.5mol% Pu which melted at 449.3℃. Additionally, an increase in the liquidus temperatures was seen for NaCl rich compositions while lower liquidus temperatures were seen for PuCl3 rich compositions. It can therefore be concluded that changes will occur in the NaCl-PuCl3 binary system when using PuCl3 with excess Pu metal. However, melting temperature analysis can provide valuable insight into the composition of the PuCl3 and therefore the NaCl-PuCl3 system.

Ni-25at.%Al 금속간화합물의 연소합성반응에 미치는 사전 Annealing 처리의 영향 (Effects of Pre-Annealing Treatment on the Combustion Synthesis of Ni3Al Intermetallics Coating)

  • 이한영;모남규
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.62-70
    • /
    • 2021
  • The problem with intermetallics coating using the heat of molten casting is that the heat generated during combustion synthesis dissolves the coating and the substrate metal. This study investigates whether pre-annealing before synthesis can control the reaction heat, with the aim of Ni3Al coating on the casting surface. Therefore, the effects of the annealing temperature and time on the combustion synthesis behavior of the powder compact of Ni-25at%Al after annealing were investigated. As results, the reaction heat when synthesized decreased as the annealing temperature was high and the annealing time was longer. This was attributed to the fact that Al was diffused to Ni particles during low temperature annealing and intermediate Ni-Al compounds were formed during high temperature annealing. After combustion synthesis, however, it was found that their microstructures were almost identical except for the amount of intermediate intermetallics. Furthermore, an annealing temperature above 450℃, at which intermediate compounds begin to form, is needed to prevent the dissolving problem during synthesizing. The intermetallics synthesized after annealing at higher temperature and prolonger annealing time showed a good wear resistance. This might be because much intermediate intermetallics of high hardness were remained in the microstructure.