• 제목/요약/키워드: Molten silicon

검색결과 63건 처리시간 0.023초

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

단결정 실리콘 잉곳 결정성장 속도에 따른 고-액 경계면 형성 및 Defect 최적화 (Melt-Crystal Interface Shape Formation by Crystal Growth Rate and Defect Optimization in Single Crystal Silicon Ingot)

  • 전혜준;박주홍;블라디미르 아르테미예프;정재학
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.17-26
    • /
    • 2020
  • It is clear that monocrystalline Silicon (Si) ingots are the key raw material for semiconductors devices. In the present industries markets, most of monocrystalline Silicon (Si) ingots are made by Czochralski Process due to their advantages with low production cost and the big crystal diameters in comparison with other manufacturing process such as Float-Zone technique. However, the disadvantage of Czochralski Process is the presence of impurities such as oxygen or carbon from the quartz and graphite crucible which later will resulted in defects and then lowering the efficiency of Si wafer. The heat transfer plays an important role in the formation of Si ingots. However, the heat transfer generates convection in Si molten state which induces the defects in Si crystal. In this study, a crystal growth simulation software was used to optimize the Si crystal growth process. The furnace and system design were modified. The results showed the melt-crystal interface shape can affect the Si crystal growth rate and defect points. In this study, the defect points and desired interface shape were controlled by specific crystal growth rate condition.

Thermal Conductivity Analysis of Amorphous Silicon Formed by Natural Cooling: A Molecular-dynamics Study

  • Lee, Byoung Min
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.295-300
    • /
    • 2016
  • To investigate the thermal conductivity and the structural properties of naturally cooled excimer-laser annealed Si, molecular-dynamics (MD) simulations have been performed. The thermal conductivity of crystalline Si (c-Si) was measured by direct method at 1000 K. Steady-state heat flow was measured using a stationary temperature profile; significant deviations from Fourier's law were not observed. Reliable processes for measuring the thermal conductivity of c-Si were presented. A natural cooling process to admit heat flow from molten Si (l-Si) to c-Si was performed using an MD cell with a size of $48.9{\times}48.9{\times}97.8{\AA}^3$. During the cooling process, the temperature of the bottom $10{\AA}$ of the MD cell was controlled at 300 K. The results suggest that the natural cooling system described the static structural property of amorphous Si (a-Si) well.

Si 침윤에 의한 Si-SiC 복합체 제조 (Preparation of Si-SiC Composites by Si-Infiltration)

  • 김인술;장주민;오기동;박홍채
    • 한국세라믹학회지
    • /
    • 제29권9호
    • /
    • pp.750-756
    • /
    • 1992
  • Reaction bonded si-SiC composites were prepared by silicon infiltration technique at temperature of 1$600^{\circ}C$ for 30 minutes in vaccum atmosphere. The microstructure and mechanical properties of Si-SiC composites were investigated and characterized. UF-15 and SE-10 as SiC powders, phenolic resin and carbon black as carbon source, and metallic silicon powder as molten Si source were used as starting materials. New SiC crystallines nucleatd and grown by reaction of Si and C were detected by TEM and SEM-EDS. The bonding between new and original SiC was found to be strong. But the wetting of SiC by unreacted metallic Si and the rapid grain growth of new SiC decreased density and fracture toughness. Fracture toughness and modulus of rupture of Si-SiC composite were about 3.2 MPa.m1/2 and 480 MPa, respectively.

  • PDF

나노탄소섬유와 나노카바이드섬유를 이용한 복합재의 제조와 활용에 관한 연구 (Preparation and Application of Fiber Composites made of Carbon Nanofibers and Carbide Nanofibers)

  • 임연수;김기덕;이재춘;김명수;김성수
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.569-575
    • /
    • 2000
  • Fabrication of carbon fiber reinforced composites was carried out by hand lay-up method. Carbon nanofibers and SiC nanofibers were used as filler in the composites fabrication. Carbon nanofibers, one of the new carbon materials, have 5∼500 nm in diameter and 5-10 nm in length. SiC nanofibers were modified by silicon monoxide vapor with carbon nanofibers. The composites were carbonized at 1000$^{\circ}C$ in a nitrogen atmosphere, and then densified by molten pitches impregnated in vacuum. Multiple cycles of liquid pitch impregnation and carbonization were carried out to obtain a desired density. The composites were characterized by density, microstructure. The inter-laminar shear strength (ILSS) test was performed for mechanical properties. For the new application, the microwave reflective proeprty of composites was investigated. Dielectric constant and permeability spectrum were measured in 12∼18 GHz frequency ranges. On the basis of the wave propagation theory in a lossy media, the reflection loss from the composite inter-layer was predict as a function of frequency.

  • PDF

3D 웨이퍼 전자접합을 위한 관통 비아홀의 충전 기술 동향 (Technical Trend of TSV(Through Silicon Via) Filling for 3D Wafer Electric Packaging)

  • 고영기;고용호;방정환;이창우
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.19-26
    • /
    • 2014
  • Through Silicon Via (TSV) technology is the shortest interconnection technology which is compared with conventional wire bonding interconnection technology. Recently, this technology has been also noticed for the miniaturization of electronic devices, multi-functional and high performance. The short interconnection length of TSV achieve can implement a high density and power efficiency. Among the TSV technology, TSV filling process is important technology because the cost of TSV technology is depended on the filling process time and reliability. Various filling methods have been developed like as Cu electroplating method, molten solder insert method and Ti/W deposition method. In this paper, various TSV filling methods were introduced and each filling materials were discussed.

A study on the fabrication of poly crystalline Si wafer by vacuum casting method and the measurement of the efficiency of solar cell

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • 한국결정성장학회지
    • /
    • 제12권3호
    • /
    • pp.120-125
    • /
    • 2002
  • Si-wafers for solar cells were cast in a size of $50{\times}46{\times}0.5{\textrm}{mm}^3$ by vacuum casting method. The graphite mold coated by BN powder, which was to prevent the reaction of carbon with the molten silicon, was used. Without coating, the wetting and reaction of Si melt to graphite mold was very severe. In the case of BN coating, SiC was formed in the shape of tiny islands at the surface of Si wafer by the reaction between Si-melt and carbon of the graphite mold on the high temperature. The grain size was about 1 mm. The efficiency of Si solar cell was lower than that of Si solar cell fabricated on commercial single and poly crystalline Si wafer. The reason of low efficiency was discussed.

반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구 (A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size)

  • 김영주;박영식;정연웅;송준백;박소영;임항준
    • Composites Research
    • /
    • 제25권6호
    • /
    • pp.172-177
    • /
    • 2012
  • 저저항 Si-SiC 소결체 제조를 위해 ${\alpha}$-SiC에서 조성과 C의 양을 변화시키면서 반응소결 특성을 고찰하였다. 시료준비는 정수압으로 성형체를 제조하였고, 용융Si 반응소결을 통해 시험편을 준비하였다. 반응소결체의 미세구조, 기계적 특성 및 전기저항 분석 결과 용융Si과 반응 후 미립의 ${\beta}$-SiC가 생성되었고, 치밀한 소결체를 형성하였다. 미립 ${\beta}$-SiC 생성량은 카본 양 에 따라 증가하였다. 그리고 C함량 10wt%이내에서 기계 R전기저항특성은 입도조성 영향이 크고 카본 함량 10wt%이상에서는 상전이 반응의 영향이 큼을 알 수 있었다.

SOI소자 제죠를 위한 ZMR공정의 모델링 (Modelling of ZMR process for fabrication of SOI)

  • 왕종회;김도현
    • 한국결정성장학회지
    • /
    • 제5권2호
    • /
    • pp.100-108
    • /
    • 1995
  • SOI구조를 얻기 위한 방법의 한가지인 ZMR공정에 있어서 열전달은 계면의 위치와 모양을 결정하는 중요한 역할을 한다. 본 연구에서는 SOI구조를 얻기 위한 ZMR공정중의 열전달 공정을 모사할 수 있는 의사정상상태 2차원 ZMR모델을 수립하였다. 본 모델은 복사, 전도 그리고 대류 열전달을 포함하며, 고/액 계면의 위치를 결정한다. 모델로부터 구한 수치해는 실리콘 기판의 용융부에서의 유동장, 전체 SOR구조에서의 온도장 그리고 실리콘 박막과 기판에서의 고/액 계면의 위치를 포함한다. 여러 공정 변수들의 변화에 따른 온도장과 계면의 형상과 폭의 변화를 알아보았다.

  • PDF

반응소결 탄화규소 세라믹스의 열물성과 기계적 특성에 미치는 SiC 크기의 영향 (Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics)

  • 권창섭;오윤석;이성민;한윤수;신현익;김영석;김성원
    • 한국분말재료학회지
    • /
    • 제21권6호
    • /
    • pp.467-472
    • /
    • 2014
  • RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.