• Title/Summary/Keyword: Molten Salt

Search Result 382, Processing Time 0.028 seconds

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 Al-Y 코팅한 Haynes 263의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.

Corrosion Behavior and Effect of Alloying Elements of Fe-base and Ni-base Superalloys on Hot Molten Salt (고온 용융염에서 Fe기 및 Ni기 초합금의 부식거동 및 합금원소의 영향)

  • Jo, Su-Haeng;Jang, Jun-Seon;Jeong, Myeong-Su;O, Seung-Cheol;Sin, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.985-991
    • /
    • 1999
  • Corrosion behaviors of Incoloy 800H, KSA(Kaeri Superalloy)-6, Inconel 600 and Hastelloy C-276 in molten salts were investigated in the temperature range of 650 ~ $850^{\circ}C$. Due to $\textrm{Li}_{2}\textrm{O}$-induced basic fluxing mechanism, the corrosion rates of the alloys in mixed molten salt of LiC1-$\textrm{Li}_{2}\textrm{O}$ were significantly higher than those in molten salt of LiCl. In the mixed molten salt, Fe-base alloys showed higher corrosion resistance than the Ni-base alloys. and Hastelloy C-276 with high Mo and W contents exhibited the highest corrosion rate among the examined alloys. The single layer of $\textrm{LiCrO}_{2}$ was formed in molten salt of LiCl and two phase structure of a scale consisted of oxides and Ni was formed in the mixed molten salt.

  • PDF

Effect of Molten Salt Coating on Heat Papers (용융염 코팅이 열지에 미치는 영향)

  • Im, Chae-Nam;Lee, Jungmin;Kang, Seung-Ho;Cheong, Hae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.528-534
    • /
    • 2014
  • Thermal batteries are primary reserve batteries that use inorganic salt as electrolytes which are inactive at room temperature. The two principal heat sources that have been used in thermal batteries are heat paper and heat pellets. As soon as the heat paper, which is ignited by the initiator, in turn ignites the heat pellets, all the solid electrolytes are melted into excellent ionic conductors. However, the high combustion temperature by heat papers in thermal batteries causes thermal decomposition at the cathode, eventually leading to a thermal runaway. In this paper, we have attempted to prepare $Zr/BaCrO_4$ heat papers coated with KCl molten salt. We have also investigated the effect of a molten salt coating on the heat papers through the thermal characteristics such as calorimetric value, combustion temperature and burning rate. The calorimetric value and combustion temperature of heat papers were reduced with an increase in the molten salt coating. As a result, the molten salt coating on heat papers greatly reduced risk of a thermal runaway and improved the stability of thermal batteries.

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

A methodology for the identification of the postulated initiating events of the Molten Salt Fast Reactor

  • Gerardin, Delphine;Uggenti, Anna Chiara;Beils, Stephane;Carpignano, Andrea;Dulla, Sandra;Merle, Elsa;Heuer, Daniel;Laureau, Axel;Allibert, Michel
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1024-1031
    • /
    • 2019
  • The Molten Salt Fast Reactor (MSFR) with its liquid circulating fuel and its fast neutron spectrum calls for a new safety approach including technological neutral methodologies and analysis tools adapted to early design phases. In the frame of the Horizon2020 program SAMOFAR (Safety Assessment of the Molten Salt Fast Reactor) a safety approach suitable for Molten Salt Reactors is being developed and applied to the MSFR. After a description of the MSFR reference design, this paper focuses on the identification of the Postulated Initiating Events (PIEs), which is a core part of the global assessment methodology. To fulfil this task, the Functional Failure Mode and Effect Analysis (FFMEA) and the Master Logic Diagram (MLD) are selected and employed separately in order to be as exhaustive as possible in the identification of the initiating events of the system. Finally, an extract of the list of PIEs, selected as the most representative events resulting from the implementation of both methods, is presented to illustrate the methodology and some of the outcomes of the methods are compared in order to highlight symbioses and differences between the MLD and the FFMEA.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Electrochemical Properties of Yttria Stabilized Zirconia Binder for Thermal Batteries (이트리아 안정화 지르코니아 바인더에 의한 열전지 전기화학적 특성)

  • Kim, Jiyoun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.331-337
    • /
    • 2017
  • Thermal batteries, reserve power source, is activated by melting of molten salt at the temperature range of $350{\sim}550^{\circ}C$. To immobile the molten state electrolyte when the thermal battery is activated, the binder must be added in electrolyte. Usually, molten salts include 30~40 wt% of MgO binder to ensure electrical insulation as well as safety. However, the conventional MgO binder tends to increase ionic conductive resistance and thus the inclusion of the binder increases the total impedance of the battery. This paper mainly focused on the study of yttria stabilized zirconia (YSZ) as an alternative binder for molten salt. The chemical stability between the molten salt and YSZ is measured by XRD and DSC. And the sufficient path for ionic conduction on molten salt could be confirmed by the enhanced wetting behavior and the enlarged pore size of YSZ. The electrochemical properties were analyzed using single cell tests so that it showed the outstanding performance than that using MgO binder.

Formation Mechanism of Sr-Ferrite by Molten Salt Method (용융염법에 의한 Sr-ferrite의 생성기구)

  • 박준홍;신효순;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1181-1187
    • /
    • 1994
  • Sr-ferrite powders were synthesized by molten salt method. The process of powder formation was investigated by controlling the size and shape (sphere and acicular) of starting materials. The morphology of resulting ferrite was plate-like regardless of the shape of starting materials, Fe2O3 powders. As a result, the formation of Sr-ferrite in the molten salt was proceeded by solution-precipitation.

  • PDF

Surface Study on the Supported Molten Salt Catalyst (담지된 금속염 혼합물 촉매의 표면 연구)

  • Kim, Jong Pal;Lee, Kwang Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.381-385
    • /
    • 2009
  • A basic objective is the preparation and surface studies of supported molten salt catalysts because molten salts can stay as the liquid phase in the range of the ordinary reaction temperature. Many kinds of metal salt mixtures for the formation of molten salt phase are appliable but CuCl and KCl were selected in this study because Cu is considered catalytically reactive in many reactons. The loading of the molten salt was selected as 25 vol% of the total pore volume of ${\gamma}-alumina$ to provide reasonable exposed surface area. The surface structure of catalysts containing molten salts in the ${\gamma}-alumina$ was studied using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). CuCl and KCl were added into the ${\gamma}-alumina$ using concentrated hydrochloric acid solution by the impregnation technique. The surfaces of the prepared catalysts before and after heat treatments were compared and they suggested that the heat treatment of catalysts helped the formation of molten-salt although the surface compositions of CuCl and KCl were not uniform.