• Title/Summary/Keyword: Molecule-molecule interaction

Search Result 271, Processing Time 0.031 seconds

Annealing effect on LC alignment using the photo-depolymerization reaction (광분해 반응을 이용한 액정배향에서의 어닐링 효과)

  • Kim, Hyung-Kyu;Yu, Mun-Sang;Seo, Dae-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1762-1764
    • /
    • 1999
  • We investigated the annealing effect on generating pretilt angle and aligning liquid crystal (LC) using the photo-depolymerization reaction in this study. In case of rubbing polyimide (PI) surface with the side chain, pretilt angle tends to increase with increasing the annealing time. It is considered because the steric interaction is increased by annealing which cause the side chain to come back to original position. For obliquely irradiating ultraviolet (UV) light on PI surface, pretilt angle shows to $0^{\circ}$ and is increased by annealing. The pretilt angle in rubbed PI surface is much higher than in photo-aligned PI surface. It is attributed to the steric interaction and the number of LC molecular arrangement on azimuthal direction. In addition. in case of obliquely irradiating UV light on PI surface. it showed LC alignment to increase by annealing. It can be regarded due to the fact that the re-alignment of LC molecule is improved to residual polymer direction by annealing.

  • PDF

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF

Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks (Metal-Organic Framework의 수소 흡착 메커니즘의 이해)

  • Lee, Tae-Bum;Kim, Dae-Jin;Yoon, Ji-Hye;Choi, Sang-Beom;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.634-637
    • /
    • 2005
  • Hydrogen adsorption mechanism onto the porous metal-organic frameworks (MOFs) has been studied by density functional theory calculation. The selected functionals for the predict ion of interact ion energies between hydrogen and potential adsorption sites of MOF was utilized after the evaluation with the various functionals for interaction energy of $H_2C_6H_6$ model system the adsorption energy of hydrogen molecule into MOF was investigated with the consideration of the favorable adsorption sites and the orientations. We also calculated the second favorable adsorption sites by geometry optimization using every combination of two first absorbed hydrogen molecules. Based on the calculation of first and second adsorption sites and energies, the hydrogen adsorption into MOF follows a cooperative mechanism in which the initial metal sites initiate the propagation of the hydrogen adsorption on the whole frameworks. In addition, it was found that the interaction strength between the simple benzene ring with hydrogen is significantly reinforced when the benzene ring has been incorporated into the framework of MOFs.

  • PDF

Influence of Intermolecular Interactions on the Structure of Copper Phthalocyanine Layers on Passivated Semiconductor Surfaces

  • Yim, Sang-Gyu;Jones, Tim S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2247-2254
    • /
    • 2010
  • The surface structures of copper phthalocyanine (CuPc) thin films deposited on sulphur-passivated and plane perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)-covered InAs(100) surfaces have been studied by low energy electron diffraction (LEED) and van der Waals (vdW) intermolecular interaction energy calculations. The annealing to $300^{\circ}C$ and $450^{\circ}C$ of $(NH_4)_2S_x$-treated InAs(100) substrates produces a ($1{\times}1$) and ($2{\times}1$) S-passivated surface respectively. The CuPc deposition onto the PTCDA-covered InAs(100) surface leads to a ring-like diffraction pattern, indicating that the 2D ordered overlayer exists and the structure is dominantly determined by the intermolecular interactions rather than substrate-molecule interactions. However, no ordered LEED patterns were observed for the CuPc on S-passivated InAs(100) surface. The intermolecular interaction energy calculations have been carried out to rationalise this structural difference. In the case of CuPc unit cells on PTCDA layer, the planar layered CuPc structure is more stable than the $\alpha$-herringbone structure, consistent with the experimental LEED results. For CuPc unit cells on a S-($1{\times}1$) layer, however, the $\alpha$-herringbone structure is more stable than the planar layered structure, consistent with the absence of diffraction pattern. The results show that the lattice structure during the initial stages of thin film growth is influenced strongly by the intermolecular interactions at the interface.

Computational Analysis of Human Chemokine Receptor Type 6

  • Sridharan, Sindhiya;Saifullah, Ayesha Zainab;Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride (염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템)

  • Kim, Hyun-Jo;Fassihi, Reza
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF

Taurine in Bone Formation and Alleviation of Its Diseases (타우린의 뼈 형성 작용과 관련질환의 경감)

  • ;Ramesh C. Gupta
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • Taurine, amino acid, chemically known as 2-amino ethane sulphonic acid was discovered more than two hundred years ago from ox bile. it is widely distributed in both mammals and nonmammals. It is found in considerably high amount in hUl11an: a normal adult of 70 kgs contains about 70 grams of taurine. Taurine with this much concentration, is involved in almost all life processes. Its deficiency causes several abnormalities in major organs like brain, eye and heart. Taurine-bone interaction is latest addition to its long list of actions. In bone cells, taurine is also found in high concentration. Taurine is found to help in enhancing the bone tissue formation which is evidenced by increased matrix formation and collagen synthesis. Besides stimulating the bone tissue formation, it also inhibits the bone loss through inhibiting the bone resorption and osteoclast formation. Thus, taurine acts as a double agent. In addition to these two major actions of taurine in bone, it also has beneficial effect in wound healing mld bone repair. Taurine possess radioprotective properties, too. As it is a naturally available molecule, it can be used as a preventive agent. Taurine has a potential to replace bisphosphonates which are currently in use for the inhibition of bone loss but this needs in depth study. As taurine is involved in bone formation and inhibition of bone loss, a detailed study can make it a single marker of bone metabolism. All these taurine-bone interaction is a symbol of their deep involvement but still require further extension to make taurine as a choice for tile sound bone health.

Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet (Mn-dimer 분자자성체의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.97-100
    • /
    • 2014
  • We have studied electronic and magnetic structure of Mn-dimer molecule using OpenMX method based on density functional method. The calculated density of states shows that the four O atoms split $e_g$ and $t_{2g}$ energy levels. The energy splitting by the crystal field is smaller than bulk MnO with cubic structure, because of small coordination number of atoms. Total energy with antiferromagnetic spin configuration is lower than that of ferromagnetic configurations. Calculated exchange interaction J between Mn atoms is one order larger than that of the other Mn-O magnetic molecules. That comes from the direct exchange interaction between Mn 3d orbitals and the super-exchange interactions caused by strong ${\sigma}$-bonding of Mn-O orbitals.

Changes in Hydrophobic Surface of Collagen by Chondroitin Sulfate : Fluorescence Intensity Measurements with Bis-ANS as the Probe

  • Kim, Sung-Koo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.446-453
    • /
    • 1995
  • The improtant components of extracellular matrix(ECM) are collagen and chondroitin sulfate. The hydrophobic surface of collagen is one of the determining factors of diameter of collagen fiber and also is closely related to the aging phenomena. The controlling mechanism of the diameter of collagen fiber influenced by the interaction with chondroitin sulfate was evaluated using bis-ANS as a hydrophobic probe. Hydrophobic surface area of collagen molecule shielded by chondroitin sulfate was evaluated. Relative fluorescence intensity of collagen in thepresence of chondroitin sulfate was measured using bis-ANS as a hydrophobic probe. The fluorescence intensity decreased with the increase in chondroitin sulfate up to 3.8 chondroitin sulfate/collagen(mole/mole). Further increase in the ratio of chondroitin sulfate to collagen did not change the fluorescence intensity. Similar changes in the relative fluorescence intensity were observed for both rat tail and lathyrific rat skin collagen. The fluorescence intensity indicated by the binding between bis-ANS and hydrophobic sites of collagen was pH dependent, and the shielding effect of collagen-chondroitin sulfate interaction could not be detected at pH above 6.0. This is probably due to the charge repulsions caused by negative charged collagen molecules at higher pH.

  • PDF

Molecular Pharmacological Interaction of Phenylbutazone to Human Neutrophil Elastase

  • Kang, Koo-Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.385-393
    • /
    • 1998
  • Human neutrophil elastase (HNElastase, EC 3.4.21.37), a causative factor of inflammatory diseases, was purified by Ultrogel AcA54 gel filtration and CM-Sephadex ion exchange chromatography. HNElastase was inhibited by phenylbutazone in a concentration dependent manner up to 0.4 mM, but as the concentration increased, the inhibitory effect gradually diminished. Binding of phenylbutazone to the human neutrophil elastase caused strong Raman shifts at 200, 440, and 1194 $cm^{-1}$. The peak at 1194 $cm^{-1}$ might be evidence of the presence $of\;-N=N-{\Phi}$ radical. The core area of the elastase, according to the visual molecular model of human neutrophil elastase, was structurally stable. A deeply situated active center was at the core area surrounded by hydrophobic amino acids. Directly neighboring the active site was one positively charged atom and two atoms carrying a negative charge, which enabled the enzyme and the drug to form a strong interaction. Phenylbutazone may form a binding, similar to a key & lock system to the atoms carrying opposite charges near the active site of the enzyme molecule. Furthermore, the hydrophobicity of the surrounding amino acid near the active site seemed to enhance the binding strength of phenylbutazone. Binding of phenylbutazone near the active site may cause masking of the active site, preventing the substrate from approaching the active site and inhibiting elastase activity.

  • PDF