• Title/Summary/Keyword: Molecular weight degradation

Search Result 251, Processing Time 0.028 seconds

Studies on the Polycondensation Rate of Poly(ethylene 2,6-naphthalate). 2. Polycondensation by Antimony Catalysts

  • 박상순;임승순
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1099-1104
    • /
    • 1995
  • The catalyzed polycondensations of bis(2-hydroxyethyl) naphthalate were kinetically investigated in the presence of various antimony compounds as a catalyst. The polymerization were investigated with various ligand types of antimony oxides, various concentrations of antimony triacetate and titanium/antimony mixed catalysts. The time to reach the maximum molecular weight was remarkably changed in each case. With increasing the concentration of antimony acetate, the propagation rate was largely increased, while the degradation rate was slightly decreased. It also can be seen that the propagation and degradation rate were larger influenced by the equimolecular titanium/antimony mixed catalyst than other mixed catalysts. The temperature dependence of bis(2-hydroxyethyl) naphthalate with antimony triacetate also has been studied. From the results, it was found that the propagation rate was less influenced by a temperature change than the degradation rate.

Analysis on Thermal Degradation of Poly($\gamma$-glutamic acid) Sodium Salt by means of Light Scattering and Viscometry (광산란과 점성도법에 의한 폴리감마글루탐산 나트륨 염의 열분해 분석)

  • Park, Il-Hyun;Eom, Hyo-Sang;Kwon, Hyo-Lee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.501-508
    • /
    • 2009
  • The thermal degradation experiment of sodium salt of poly (${\gamma}$-glutamic acid) (PGGNa) has been carried out in both its solid phase and solution phase at the range of $57{\sim}120^{\circ}C$ and their molecular weight decreasing effect was analyzed as a function of time by means of viscometry and light scattering. Based on the solid phase degradation results, it was supposed that the bond scission rate in a polymer chain kept constant and that the bond scission was occurred on a randomly located position in a polymer chain. For the degradation in solution phase, it was also found that all data at various temperatures were dropped on a single master curve when the reduced time $t/t^*$ was used in the plot of the reciprocal intrinsic viscosity (or molecular weight). This degradation curve in solution phase could be expressed as the sum of a single exponential and a linear equation and especially, the single exponential character appeared only at the beginning stage. The activation energy was measured as $107{\sim}115$ kJ/mol in this study and agreed with the literature values.

Low Molecular Weight Polyethylenimine-Mitochondrial Leader Peptide Conjugate for DNA Delivery to Mitochondria

  • Choi, Joon-Sig;Choi, Min-Ji;Go, Gyeong-Su;Rhee, Byoung-Doo;KimPak, Young-Mi;Bang, In-Seok;Lee, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1335-1340
    • /
    • 2006
  • It has been found that a number of diseases are associated with mutations in the mitochondrial DNA. Therapeutic gene delivery to mitochondria has been suggested as a clinical option for these diseases. In this study, we developed a gene carrier to mitochondria by the conjugation of mitochondrial leader peptide (LP) to polyethylenimine (PEI). Mitochondrial LP conjugated PEI (PEI-LP) was synthesized with low molecular weight PEI (2,000 Da, PEI2K). Gel retardation assay showed that PEI2K-LP formed complexes at a 1.0/1 weight ratio. In addition, PEI2K-LP protected DNA from the enzymatic degradation for at least 60 min, while naked DNA was completely degraded within 20 min. PEI2K-LP was compared with LP conjugated high molecular weight PEI (25,000 Da, PEI25K) in terms of toxicity and delivery efficiency. MTT assay showed that PEI2K-LP had much lower cytotoxicity than PEI25K-LP to 293 cells. In addition, cell-free DNA delivery assay showed that PEI2K-LP delivered more DNA to mitochondria at a 1.8/1 weight ratio than naked DNA or PEI. This result suggests that PEI2K-LP may be useful for the development of mitochondrial gene therapy system with lower cytotoxicity.

Degradation of Alginate Solution by Using ${\gamma}-Irradiation$ and Organic Acid (감마선과 유기산을 이용한 알긴산 용액의 저분자화에 대한 연구)

  • Cho, Min;Kim, Byung-Yong;Rhim, Jong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.67-71
    • /
    • 2003
  • Alginates were irradiated in an aqueous solution with $Co^{60}$ gamma rays in the dose ranges from 0 to 100 kGy, and investigated the relationship between the intrinsic viscosity $([{\eta}])$ and the molecular weight $(M_w)$ of alginates. The molecular weight of alginate was measured by gel permeation chromatography and the ranges from 1,894 to 135,174 Da were obtained. The molecular weight of alginate decreased markedly with increasing the degree of ${\gamma}-ray$ dose rate. The intrinsic viscosity of alginate solution after ${\gamma}-irradiation$ showed the ranges from 9.83 (g/g) to 602.69 (g/g), depending upon the ${\gamma}-irradiation$ dose. The molecular weight of alginate dependence of the intrinsic viscosity of the alginate solution would be expressed by Mark-Houwink equation. With a linearization of molecular weight and the intrinsic viscosity of the alginate solution, Mark-Houwink equation could be expressed with constant variables and the real data fitted to the equation of $[{\eta}]=2.2{\times}10^{-6}\;{M_w}^{1.656}\;(R^2=0.998)$.

A Study on the Molecular Weight Control and Rheological Properties of Branched Polycarbonate (분지형 폴리카보네이트의 분자량 조절 및 유변학적 특성 연구)

  • Lee, Bom Yi;Dahal, Prashanta;Kim, Hee Seung;Yoo, Seung Yoon;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.388-393
    • /
    • 2012
  • Branched polycarbonates (B-PCs) were synthesized using melt polymerization method with four different end capping agents and vaying concentrations. The chemical structure of the synthesized PC was determined by FT-IR and $^{1}H-NMR$ spectroscopy, and the reaction of the end capping agent was confirmed by the existence of hydroxy group in FT-IR spectrum. The average molecular weight and distribution, glass transition and degradation temperatures were determined by GPC, DSC and TGA. The average molecular weight changed with the chemical structure of end capping agent, and 4-tert-butylphenol was estimated as the optimum end capping agent. The average molecular weights of B-PCs decreased with the increase of the concentration of the agent, the number average molecular weight represented 20000 when 0.05 mol% of 4-tert-butylphenol was added to B-PCs. The melt viscosities of the B-PCs decreased with the decrease of the molecular weight of B-PCs, and adding of the agent was not effected to shear thinning tendency.

Changes of SDS-PAGE Pattern of Pork Myofibrillar Proteins Induced by Electron Beam Irradiation

  • Whang Key;Jeong, Dong-Kwan;Kim, Hyuk-Il
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.378-381
    • /
    • 2005
  • Actin and myosin solutions and fresh ground pork were irradiated with the electron beam (e-beam) at a dose of 0, 1.5, 3.0, 5.0 and 10 kGy. The changes in SDS-PAGE pattern of 2 proteins and the salt-soluble proteins extracted from ground pork after e-beam irradiation were monitored. When the myosin solution was irradiated with e-beam, myosin was degraded completely. Complete myosin degradations were observed even with the lowest dose (1.5 kGy) of e-beam treatment. Actin was degraded with the irradiation, but to a less extent than myosin was. The degradation of actin increased as the e-beam treatment increased from 1.5 to 10.0 kGy. Among the salt-soluble proteins extracted from ground pork, myosin was degraded gradually when the e-beam dose increased from 1.5 up to 10.0 kGy. Similar gradual increase in the degradation of actin also occurred with the increase of irradiation. Increases of 2 low molecular weight compounds (<29 kDa) were observed when the irradiation dose increased from 1.5 to 10.0 kGy. These 2 molecules are thought to be the breakdown products produced from the degradation of major salt-soluble proteins, myosin and actin. The salt-soluble protein content of ground pork did not change with the e-beam irradiation.

Degradation Characteristics of Perfluoropolyether Lubricant for Computer Hard Disk (컴퓨터 하드디스크 윤활제로 사용되는 Perfluoropolyether의 분해거동)

  • Lee, Ji-Hye;Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.278-282
    • /
    • 2007
  • The degradation characteristics of perfluoropolyether (PFPE) for computer hard disk drive have been investigated. Thermal degradation in PFPE started at $170\;^{\circ}C$ and it was completed at $450\;^{\circ}C$. If PFPE was contacted with wear fragment from slider made by $Al_2O_3{\cdot}TiC$, the thermal degradation was accelerated by the catalytic Lewis acid degradation. The Lewis acid degradation mainly took placed in methylene oride(fluoride) chain scission as well as methylene(fluoride) and hydroxy end chain. As a result, the degradation reaction accomplished as early as at $300\;^{\circ}C$. The photo oxidation due to UV exposure on PFPE caused the chain scission in methylene(fluoride), and end chain in PFPE without chain scission in methylene oxide(fluoride) and then the molecular weight of PFPE increased by expected secondary reactions between formed radicals in the photo oxidation.

Degradation of Polyhedral Proteins of Nuclear Polyhedrosis Viruses in the Gut Juice of Several Lepidopteran Larvae (곤충 핵다각체병 바이러스 다각체 단백질의 소화액에 의한 분해)

  • 진병래;박범석;우수동;김주읍;강석권
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.513-519
    • /
    • 1993
  • The alkaline protease in the polyhedra preparation of Spodoptera litura nuclear polyhedrosis virus was successfully inactivated by heating at 100C for 20 minutes. SDS-PAGE analysis indicated that heat inactivated polyhedra is composed of major proteins of 31kDa and presumptive its polymer protein of 62kDa. However, this polyhedra was converted into several smaller molecular weight proteins when treated with midgut juice, but not by treatment with heat-inactivated midgut juice.

  • PDF

Preparation and Characterization of Pamidronate-loaded PLGA Wafer for the Treatment of Bone Resorption (골 재흡수 치료를 위한 파미드로네이트를 함유한 이식형 생분해성 PLGA 웨이퍼의 제조와 특성결정)

  • 유제영;김상욱;강길선;성하수;정제교
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.680-690
    • /
    • 2002
  • Implantable biodegradable wafers were prepared with pamidronate -loaded poly (L-lactide-co-glycolide) (PLGA, 75 : 25 mole ratio by lactide to glycolide, molecular weight : 20000 and 90000 g/mole) by direct compression method for the sustained release of pamidronate to investigate the possibility for the treatment of bone resorption. Pamidronate-loaded PLGA powders were prepared by means of physical mixing and spray drying with the control of formulation factors and characterized by scanning electron microscope and X-ray diffractometer. The pamidronate-loaded PLGA powders fabricated into wafers by direct compression under the constant pressure and time at room temperature. These wafers were also observed for their structural characteristic, release pattern, and degradation pattern. The release rate of pamidronate increased with increasing their initial loading ratio as well as increasing wafer thickness. The molecular weight of PLGA affects the release pattern : the higher molecular weight of PLGA, the faster release rate. It can be explained that the higher viscosity of high molecular PLGA solution at same concentration tends to aggregate PLGA and pamidronate resulting in unstable pharmaceutical dosage form. This system had advantages in terms of simplicity in design and obviousness of drug release rate and nay be useful as an implantable dosage form for the treatment of aural cholesteatoma.

Effect of High Intensity Ultrasonic Wave on the Degradation Characteristics of PEO (고강도 초음파에 의한 PEO의 분해특성에 관한 연구)

  • 김형수;김미화
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.353-359
    • /
    • 2002
  • High intensity ultrasound has been applied to a series of poly(ethylene oxide) (PEO)/water systems having different molecular weights of PEO. Major interest was focused on the effect of ultrasonic wane on the melt viscosity chemical structure and thermal properties of PEO. The expected role of ultrasound used in this study was to generate macroradicals of PEO chains by the formation and subsequent collapse of bubbles. It was found that the melt viscosity and chemical structure of PEO change significantly depending on the sonication time. For the prolonged sonication, PEO chains were significantly degraded and new end groups were formed by the interplay of various radical species. When the molecular weight of PEO was relatively higher, the crystallization rate was decreased and the intensity of the melting peak was reduced.