A Study on the Molecular Weight Control and Rheological Properties of Branched Polycarbonate

분지형 폴리카보네이트의 분자량 조절 및 유변학적 특성 연구

  • Published : 2012.08.10

Abstract

Branched polycarbonates (B-PCs) were synthesized using melt polymerization method with four different end capping agents and vaying concentrations. The chemical structure of the synthesized PC was determined by FT-IR and $^{1}H-NMR$ spectroscopy, and the reaction of the end capping agent was confirmed by the existence of hydroxy group in FT-IR spectrum. The average molecular weight and distribution, glass transition and degradation temperatures were determined by GPC, DSC and TGA. The average molecular weight changed with the chemical structure of end capping agent, and 4-tert-butylphenol was estimated as the optimum end capping agent. The average molecular weights of B-PCs decreased with the increase of the concentration of the agent, the number average molecular weight represented 20000 when 0.05 mol% of 4-tert-butylphenol was added to B-PCs. The melt viscosities of the B-PCs decreased with the decrease of the molecular weight of B-PCs, and adding of the agent was not effected to shear thinning tendency.

말단캡핑제(end capping agent) 4종류와 함량별로 분지형 폴리카보네이트를 용융중합법으로 제조하였다. 합성된 분지형 폴리카보네이트의 화학구조는 FT-IR과 $^{1}H-NMR$ 스펙트럼을 이용하여 확인하였으며, 말단캡핑제의 반응여부는 FT-IR 스펙트럼의 수산기($3500\;cm^{-1}$) 존재여부로 확인하였다. 평균 분자량 및 분자량 분포도, 유리전이 온도 및 분해온도는 GPC, DSC와 TGA를 이용하여 측정하였다. 말단캡핑제의 화학구조에 따라 평균 분자량이 증가 또는 감소를 나타내었으며, 말단캡핑제로 4-tert-butylphenol (TBP)이 사용되었을 때 최적의 분자량 조절 결과를 나타내었다. 말단캡핑제의 함량이 증가할수록 평균분자량은 감소하였고, 4-tert-butylphenol이 0.05 mol%가 첨가될 때 폴리카보네이트의 대형 사출물 가공에 적합한 20000 정도의 수평균분자량을 나타내었다. 분지형 폴리카보네이트의 용융점도는 분자량이 감소할수록 감소하였으며, shear thinning effect에는 큰 영향을 주지 않음을 확인하였다.

Keywords

References

  1. J. M. Perez, J. L. Vilas, J. M. Laza, S. Arnaiz, F. Mijangos, E. Bilbao, M. Rodriguez, and L. M. Leos, J. Mat. Process Tech., 210, 727 (2010). https://doi.org/10.1016/j.jmatprotec.2009.12.009
  2. H. I. Lee and J. S. Lee, Polym. Sci. Tech., 4, 423 (1993).
  3. M. Diepens and P. Gijsman, Polym. Degrad. Stabil., 94, 1808 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.06.008
  4. Y. J. Mergler, R. J. van Kampen, W. J. Nautaa, R. P. Schaake, B. Raas, J. G. H. van Griensven, and C. J. M. Meesters, Wear, 258, 915 (2005). https://doi.org/10.1016/j.wear.2004.09.046
  5. Bayer, Korean Patent, 10-2011-0013394.
  6. Cheilmosik, Korean Patent, 10-0888621.
  7. LG chemical, Korean Patent, 10-2005-0101794.
  8. S. J. Choi, K. H. Yoon, I. H. Hwang, C. Y. Lee, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Appl. Chem. Eng., 21, 532 (2010).
  9. S. J. Choi, K. H. Yoon, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Polymer (Korea)., 35, 356 (2011).
  10. K. C. Choi, E. K. Lee, S. Y. Choi, and S. J. Park, J. Korean Ind. Eng. Chem., 13, 1 (2002).
  11. A. C. Hagenaars, J.-J. Pesce, C. Bailly, and B. A Wolf, Polymer, 42, 7653 (2001). https://doi.org/10.1016/S0032-3861(01)00250-6
  12. M. Sugimoto, Y. Suzuki, K. Hyun, K. H, Ahn, T. Ushioda, A. Nishioka, T. Taniguchi, and K. Koyama, Rheol Acta, 46, 33 (2006). https://doi.org/10.1007/s00397-005-0065-z