• Title/Summary/Keyword: Molecular techniques

Search Result 882, Processing Time 0.027 seconds

Update on the Taxonomy of Clinically Important Anaerobic Bacteria (임상적으로 중요한 무산소성 세균의 분류 업데이트)

  • Myungsook, Kim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • The taxonomy of bacteria in the field of clinical microbiology is in a state of constant flux. A large-scale revamping of the classification and nomenclature of anaerobic bacteria has taken place over the past few decades, mainly due to advances in molecular techniques such as 16S rRNA and whole genome sequencing (WGS). New genera and species have been added, and existing genera and species have been reclassified or renamed. A major role of the clinical microbiological laboratories (CMLs) is the accurate identification (ID) and appropriate antimicrobial susceptibility testing (AST) for clinically important bacteria, and rapid reporting and communication of the same to the clinician. Taxonomic changes in anaerobic bacteria could potentially affect the choice of appropriate antimicrobial agents and the antimicrobial breakpoints to use. Furthermore, current taxonomy is important to prevent treatment failures of emerging pathogenic anaerobes with antimicrobial resistance. Therefore, CMLs should periodically update themselves on the changes in the taxonomy of anaerobic bacteria and suitably inform clinicians of these changes for optimum patient care. This article presents an update on the taxonomy of clinically important anaerobic bacteria, together with the previous names or synonyms. This taxonomy update can help guide antimicrobial therapy for anaerobic bacterial infections and prevent treatment failure and can be a useful tool for both CMLs and clinicians.

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.

In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice

  • Ning Wang ;Linman Li ;Puyu Zhang;Muhammad Aamer Mehmood ;Chaohua Lan;Tian Gan ;Zaixin Li ;Zhi Zhang ;Kewei Xu ;Shan Mo ;Gang Xia ;Tao Wu ;Hui Zhu
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.682-697
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

Micropatterning of Polyimide and Liquid Crystal Elastomer Bilayer for Smart Actuator (스마트 액추에이터를 위한 폴리이미드 및 액정 엘라스토머 이중층의 미세패터닝)

  • Yerin Sung;Hyun Seung Choi;Wonseong Song;Vanessa;Yuri Kim;Yeonhae Ryu;Youngjin Kim;Jaemin Im;Dae Seok Kim;Hyun Ho Choi
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.169-274
    • /
    • 2024
  • Recent attention has been drawn to materials that undergo reversible expansion and contraction in response to external stimuli, leading to morphological changes. These materials hold potential applications in various fields including soft robotics, sensors, and artificial muscles. In this study, a novel material capable of responding to high temperatures for protection or encapsulation is proposed. To achieve this, liquid crystal elastomer (LCE) with nematic-isotropic transition properties and polyimide (PI) with high mechanical strength and thermal stability were utilized. To utilize a solution process, a dope solution was synthesized and introduced into micro-printing techniques to develop a two-dimensional pattern of LCE/PI bilayer structures with sub-millimeter widths. The honeycomb-patterned LCE/PI bilayer mesh combined the mechanical strength of PI with the high-temperature contraction behavior of LCE, and selective printing of LCE facilitated deformation in desired directions at high temperatures. Consequently, the functionality of selectively and reversibly encapsulating specific high-temperature materials was achieved. This study suggests potential applications in various actuator fields where functionalities can be implemented across different temperature ranges without the need for electrical energy input, contingent upon molecular changes in LCE.

Integration of virtual screening and proteomics reveals potential targets and pathways for ginsenoside Rg1 against myocardial ischemia

  • Rongfang Xie;Chenlu Li;Chenhui Zhong;Zuan Lin;Shaoguang Li;Bing Chen;Youjia Wu;Fen Hu;Peiying Shi;Hong Yao
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.395-404
    • /
    • 2024
  • Background: Ginsenoside Rg1 (Rg1) is one of the main active components in Chinese medicines, Panax ginseng and Panax notoginseng. Research has shown that Rg1 has a protective effect on the cardiovascular system, including anti-myocardial ischemia-reperfusion injury, anti-apoptosis, and promotion of myocardial angiogenesis, suggesting it a potential cardiovascular agent. However, the protective mechanism involved is still not fully understood. Methods: Based on network pharmacology, ligand-based protein docking, proteomics, Western blot, protein recombination and spectroscopic analysis (UV-Vis and fluorescence spectra) techniques, potential targets and pathways for Rg1 against myocardial ischemia (MI) were screened and explored. Results: An important target set containing 19 proteins was constructed. Two target proteins with more favorable binding activity for Rg1 against MI were further identified by molecular docking, including mitogen-activated protein kinase 1 (MAPK1) and adenosine kinase (ADK). Meanwhile, Rg1 intervention on H9c2 cells injured by H2O2 showed an inhibitory oxidative phosphorylation (OXPHOS) pathway. The inhibition of Rg1 on MAPK1 and OXPHOS pathway was confirmed by Western blot assay. By protein recombination and spectroscopic analysis, the binding reaction between ADK and Rg1 was also evaluated. Conclusion: Rg1 can effectively alleviate cardiomyocytes oxidative stress injury via targeting MAPK1 and ADK, and inhibiting oxidative phosphorylation (OXPHOS) pathway. The present study provides scientific basis for the clinical application of the natural active ingredient, Rg1, and also gives rise to a methodological reference to the searching of action targets and pathways of other natural active ingredients.

Expression of Peroxiredoxin and Thioredoxin in Human Lung Cancer and Paired Normal Lung (인체의 폐암과 정상 폐조직에서 Peroxiredoxin 및 Thioredoxin의 발현 양상)

  • Kim, Young Sun;Park, Joo Hun;Lee, Hye Lim;Shim, Jin Young;Choi, Young In;Oh, Yoon Jung;Shin, Seung Soo;Choi, Young Hwa;Park, Kwang Joo;Park, Rae Woong;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.2
    • /
    • pp.142-150
    • /
    • 2005
  • Background : Continuous growth stimulation by various factors, as well as chronic oxidative stress, may co-exist in many solid tumors, such as lung cancer. A new family of antioxidant proteins, the peroxiredoxins (Prxs), have been implicated in the regulation of many cellular processes, including cell proliferation, differentiation and apoptosis. However, a real pathophysiological significance of Prx proteins, especially in lung disease, has not been sufficiently defined. Therefore, this study was conducted to investigate the distribution and expression of various Prx isoforms in lung cancer and other pulmonary conditions. Method : Patients diagnosed with lung cancer, and who underwent surgery at the Ajou Medical Center, were enrolled. The expressions of Prxs, Thioredoxin (Trx) and Thioredoxin reductase (TR) were analyzed using proteomic techniques and the subcellular localization of Prx proteins was studied using immunohistochemistry on normal mouse lung tissue. Result : Immunohistochemical staining has shown the isoforms of Prx I, II, III and V are predominantly expressed in bronchial and alveolar lining epithelia, as well as in the alveolar macrophages of the normal mouse lung. The isoforms of Prx I and III, and thioredoxin were also found to be over-expressed in the lung cancer tissues compared to their paired normal lung controls. There was also an increased amount of the oxidized form of Prx I, as well as a putative truncated form of Prx III, in the lung cancer samples when analyzed using 2-dimensional electrophoresis. In addition, a 43 kDa intermediate molecular weight protein band, and other high molecular weight bands of over 20 kDa, recognized by the anti-Prx I antibody, were present in the tissue extracts of lung cancer patients on 1-Dimensional electrophoresis, which require further investigation. Conclusion : The over-expressions of Prx I and III, and Trx in human lung cancer tissue, as well as their possible chaperoning function, may represent an attempt by tumor cells to adjust to their microenvironment in a manner advantageous to their survival and proliferation, while maintaining their malignant potential.

Verification of ET and AI Derived Offspring Using on the Genetic Polymorphisms of Microsatellite and Coat Color Related Genes in Jeju Black Cattle (제주흑우 집단에서 모색 관련 유전자와 microsatellite marker의 다형현상을 이용한 수정란이식 및 인공수정 유래 후대우 검증)

  • Han, Sang-Hyun;Ko, Jin-Cheul;Kim, Young-Hoon;Kim, Nam-Young;Kim, Jae-Hwan;Ko, Moon-Suck;Jeong, Ha-Yeon;Cho, In-Cheol;Yang, Young-Hoon;Lee, Sung-Soo
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.381-387
    • /
    • 2010
  • To find offspring of Jeju Black cattle (JBC) produced by embryo transfer (ET) and artificial insemination (AI), a molecular genetic study was carried out in candidate cattle populations collected from cattle farms in Jeju Island, Korea. The genetic marker set was composed of 11 ISAG microsatellite (MS) markers, 11 SAES MS markers selected by our preliminary analysis for population diversity of JBC and two major coat color related genes: MC1R and ASIP. The results showed a combined non-exclusion probability for first parent (NE-P1) that was higher than that recommended by ISAG (above 0.9995), and a combined non-exclusion probability for sib identity of $5.3{\times}10^{-10}$. Parentage analysis showed that the cases identified the candidate's father only (77.0%), mother only (54.0%), and both parents (40.5%) in the candidate offspring population. The ET and AI calves were identified as 14.7% in the in vitro fertilized eggs provided and 32.4% in total population, respectively. However, the result from ISAG marker analysis showed 3 identical allele-combinations in 7 calves, and that from ISAG/SAES MS marker combination also showed 1 identical allele-combination in 2 calves. Data from MS and coat-color gene analyses provided information for complete identification of all animals tested. Because the present JBC population was mostly bred using small nuclear founders through bioengineering techniques such as AI and ET, the genetic diversity levels obtained from MS analysis in the JBC population were relatively lower than those of other cattle populations, including Hanwoo. The results suggested that the more efficient marker combinations, including coat color related genotypes, should be studied and used for constructing a system for identification and molecular breeding of JBC as well.

Detection of embB Gene Mutation of Mycobacterium tuberculosis by Reverse Hybridization Assay (역교잡 방법을 이용한 결핵균 embB 유전자 돌연변이 검출)

  • Park, Young Kil;Yu, Hee Kyung;Park, Chan Hong;Ryu, Sung Weon;Lee, Seung Heon;Shim, Myung Sup;Lew, Woo Jin;Koh, Won-Jung;Kwon, O Jung;Cho, Sang Nae;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Background : Ethambutol (EMB) is one of important first-line drug in the treatment of tuberculosis. Molecular techniques to detect embB gene mutations have been considered as an method to define the EMB resistance. We investigated the mutation rate within embB gene among EMB resistant strains using reverse hybridization techniques. Methods : We made 11 probes that had wild or mutated sequences containing codons 306, 406, or 497 within embB gene respectively. These probes were reverse-hybridized with PCR products amplified from embB gene which were isolated from 149 ethambutol resistant strains and 50 pan-susceptible strains. Results : Out of 149 ethambutol resistant strains, one hundred (67.1%) had mutation at least one base at codon 306, 406, or 497 in embB gene. Mutation at codon 306, 406, 497 were demonstrated in 75 (50.3%), 16 (10.7%), and 13 strains (8.7%) respectively. There were four strains that showed multi-mutation at codon 306 and codon 406 simultaneously. A high proportion (8.1%) had single mutation at codon 406. There was no mutation observed in embB gene among 50 pan-susceptible strains. Conclusion : Reverse hybridization will be useful technique for detection of gene mutation correlated to ethambutol resistance.

Review of the study on the surfactant-induced foliar uptake of pesticide (계면활성제에 의해 유도되는 농약의 엽면 침투성 연구 현황)

  • Yu, Ju-Hyun;Cho, Kwang-Yun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2002
  • Research trends in the measurement of foliar uptake of pesticides and the recently proposed action mechanism of the surfactant-induced uptake of pesticides were reviewed with the related reports and studies. Major techniques used in those fields are bioassay, radiotracer techniques with leaves or cuticular membrane. Recently, a new method using Congo Red as a tracer was proposed. The limiting factor in the pesticides uptake into leaves is the waxy layer which consists of the epicuticular and cuticular wax. Physico-chemical parameters such as molar volume, water solubility and partition coefficient of pesticides have limited influences on the pesticide uptake into leaves. Polydisperse ethoxylated fatty alcohol surfactants are well known as the good activator for many pesticides. It is now generally agreed that uptake activation is not related to the intrinsic surface active properties of surfactants such as surface activity, solvent property, humectancy and critical micelle concentration. Recent studies using ESR-spectroscopy revealed that the surfactants have an unspecific plasticising effect on the molecular structure of the wax and cuticular matrix, leading to increased mobilities of pesticides. Penetration of surfactants into waxy layer altered the pesticide mobility in wax and the partition coefficient of pesticide, and then the pesticides penetration into leaves was enhanced temporally. The enhancing effect of surfactant could be significantly different depending on the carbon number of aliphatic moiety and the number of ethoxy group in polyoxyethylene chain of surfactants. It is suggested that the rate of penetration of surfactants should have a significant relationship with the rate of penetration of pesticides.