• Title/Summary/Keyword: Molecular techniques

Search Result 876, Processing Time 0.025 seconds

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won;Kang, Dong-Ku;Choo, Jae-Bum;Demllo, Andrew J.;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.705-712
    • /
    • 2011
  • Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.

Molecular Thin Films and Small-molecule Organic Photovoltaics

  • Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.63-63
    • /
    • 2011
  • In this tutorial session, the field of organic photovoltaic (OPV) cells based on small molecular weight materials will be presented. The previously reported studies on the fabrication, structure, and property of the cells as well as the molecular materials are included. Especially, the factors hampering further enhancement in the power conversion efficiency of the cells such as exciton recombination, light absorption and interfacial morphology between electron donor and acceptor layer will be discussed in detail. The recent progress in our group will also be presented. It includes typical materials and cell fabrication techniques we used as well as the studies on improving the light absorption in the electron donor layer and reducing the extinction of excitons formed by introducing the nanostructured interface between organic layers.

  • PDF

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.

Molecular Structural Characterization of Properties of Polymethacrylates by Molecular Modeling Techniques

  • Jung, Keun-Yung;Kim, Hyung-Il;Ju-Whan Liu
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • We simulated the conformational changes of polymethacrylates which have side chains with different lengths (methyl and butyl) by molecular dynamics simulation technique. Bulk states of atactic amorphous polymers relaxed at a higher temperature were generated. The chain behaviors of polymethacrylates were investigated upon varying temperatures. Molecular structural information was then obtained by characterizing radial distribution function(RDF), mean square displacement, self diffusion constant, and Connolly surfaces, among others. The estimated self diffusion constants and RDF values of PMMA and PBMA were found to be in good agreement with our expectation in view of the chain flexibility.

  • PDF

Real-Time Pleural Elastography: Potential Usefulness in Nonintubated Video-Assisted Thoracic Surgery

  • Tacconi, Federico;Chegai, Fabrizio;Perretta, Tommaso;Ambrogi, Vincenzo
    • Journal of Chest Surgery
    • /
    • v.54 no.5
    • /
    • pp.433-435
    • /
    • 2021
  • Pleural adhesions are a major challenge in standard and nonintubated video-assisted thoracic surgery. The currently available imaging techniques help to assess the presence and extent of pleural adhesions, but do not provide information on tissue deformability, which is crucial for intraoperative management. In this report, we describe the utilization of real-time elastography mapping of pleural adhesions. This technique enabled us to detect areas with softer adhesions, and helped establish the surgical plan in a difficult case of a patient scheduled for nonintubated video-assisted thoracic surgery.

Clinical features and molecular mechanism of muscle wasting in end stage renal disease

  • Sang Hyeon Ju;Hyon-Seung Yi
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.426-438
    • /
    • 2023
  • Muscle wasting in end-stage renal disease (ESRD) is an escalating issue due to the increasing global prevalence of ESRD and its significant clinical impact, including a close association with elevated mortality risk. The phenomenon of muscle wasting in ESRD, which exceeds the rate of muscle loss observed in the normal aging process, arises from multifactorial processes. This review paper aims to provide a comprehensive understanding of muscle wasting in ESRD, covering its epidemiology, underlying molecular mechanisms, and current and emerging therapeutic interventions. It delves into the assessment techniques for muscle mass and function, before exploring the intricate metabolic and molecular pathways that lead to muscle atrophy in ESRD patients. We further discuss various strategies to mitigate muscle wasting, including nutritional, pharmacological, exercise, and physical modalities intervention. This review seeks to provide a solid foundation for future research in this area, fostering a deeper understanding of muscle wasting in ESRD, and paving the way for the development of novel strategies to improve patient outcomes.

An Overview for Molecular Markers in Plants (식물에서 분자 마커의 동향)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.839-848
    • /
    • 2015
  • A molecular marker is a molecule contained within a sample taken from an organism or other matter. The development of molecular techniques for genetic analysis has led to a great contribution to our knowledge of plant genetics and our understanding of the structure and behavior of various genomes in plants. Recently, functional molecular markers have been developed to detect the presence of major genes from the analysis of pedigreed data in absence of molecular information. DNA markers have developed into many systems based on different polymorphism-detecting techniques or methods such as RFLP, AFLP, RAPD, SSR, SNP, etc. A new class of very useful DNA markers called genic molecular markers utilizing the ever-increasing archives of gene sequence information being accumulated under the EST sequencing projects on a large number of plant species. Functional markers are derived from polymorphic sequences, and are more likely to be involved in phenotypic trait variation. Based on this conceptual framework, the marker systems discussed below are all (gene)-targeted markers, which have the potential to become functional. These markers being part of the cDNA/EST-sequences, are expected to represent the functional component of the genome i.e., gene(s), in contrast to all other random DNA based markers that are developed/generated from the anonymous genomic DNA sequences/domains irrespective of their genic content/information. Especially I sited Poczai et al’ reviews, advances in plant gene-targeted and functional markers. Their reviews may be some useful information to study molecular markers in plants.

Studying immune system using imaging and microfabrication (생체영상과 미세가공을 이용한 면역 시스템 연구)

  • Doh, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1446-1449
    • /
    • 2008
  • Immune system is composed of multiple cells with distinct functions, and immune responses are orchestrated by complex and dynamic cell-cell interactions. Therefore, each cell behavior and function should be understood under right spatio-temporal context. Studying such complexity and dynamics has been challenging with conventional biological tools. Recent development of new technologies such as state of art imaging instruments and microfabrication techniques compatible with biological systems have provided many exciting opportunities to dissect complex and dynamic immune cell interactions; new microscopy techniques enable us to observe stunning dynamics of immune system in real time. Microfabrication permits us to manipulate microenvironments governing molecular/cellular dynamics of immune cells to study detailed mechanisms of phenomena observed by microscopy. Also, microfabrication can be used to engineer microenvironments optimal for specific imaging techniques. In this presentation, I am going to present an example of how these two techniques can be combined to tackle challenging problems in immunology. Obviously, this strategy can readily be applied to many different fields of biology other than immunology.

  • PDF

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Detecting DNA hydroxymethylation: exploring its role in genome regulation

  • Sun-Min Lee
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.135-142
    • /
    • 2024
  • DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as third-generation sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC.