• Title/Summary/Keyword: Molecular pathway

Search Result 1,757, Processing Time 0.029 seconds

Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells (카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성)

  • Kim, MyeongSeok;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

H9 Inhibits Tumor Growth and Induces Apoptosis via Intrinsic and Extrinsic Signaling Pathway in Human Non-Small Cell Lung Cancer Xenografts

  • Kim, Min-Je;Kwon, Sae-Bom;Ham, Seung Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu;Choi, Kang Duk;Hong, Jin Tae;Jung, Seung Hyun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.648-657
    • /
    • 2015
  • H9, a novel herbal extract, demonstrated cytotoxicity in A549 non-small cell lung cancer (NSCLC) cell lines. In this study, we investigated whether H9, and/or co-treatment with an anticancer drug, pemetrexed (PEM), inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. The mice were separated into groups and administered H9 and PEM for 2 weeks. Protein and mRNA levels were detected using western blotting and reverse transcription polymerase chain reaction, respectively; immunohistochemistry (IHC) was also performed on the tumor tissues. H9 and co-treatment with PEM induced the cleavage of proapoptotic factors, such as caspase-3, caspase-8, caspase-9, and poly(ADP)-ribose polymerase (PARP). Expression levels of cell-death receptors involving Fas/FasL, TNF-related apoptosisinducing ligands (TRAIL), and TRAIL receptors were increased by H9 and co-treatment with PEM. Furthermore, analysis of levels of cell-cycle modulating proteins indicated that tumor cells were arrested in the G1/S phase. In addition, the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt survival signaling pathways were inhibited by H9 and co-treatment with PEM. In conclusion, H9 and co-treatment with PEM inhibited tumor growth in BALB/c nude mice models bearing A549 NSCLC cells. These results indicate that H9 and co-treatment with PEM can be used as an anticancer therapy in NSCLC.

Dihydroxy-acid Dehydratase Involved in the Biosynthesis of the Branched-Chain Amino acids, Isoleucine and Valine, from the archaeon Sulfolobus solfataricus

  • Kim, Seong-Hun;Lee, Sun-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.327-333
    • /
    • 2005
  • Dihydroxy-acid dehydratase (DHAD, 2,3-dihydroxy-acid hydrolyase, EC 4.2.1.9) is one of the key enzymes involved in the biosynthetic pathway of the branched chain amino acid isoleucine and valine. Although the enzyme have been purified and characterized in various mesophiles including bacteria and eukarya, the biochemical properties of DHAD has bee not yet reported from hyperthermophilic archaea. In this study, we cloned, expressed, and purified a DHAD homologue from the thermoacidophilic archaeon Sulfolobus solfataricus P2, which grows optimally at $80\;^{\circ}C$ and pH 3, in E. coli. Characterization of the recombinant S. solfataricus DHAD (rSso_DHAD) revealed that it is the dimeric protein with a subunit molecular weight of 64,000 Da in native structure. rDHAD showed the highest activity toward 2,3-dihydroxyisovaleric acid among 17 aldonic acid substrates Interestingly, this enzyme also displayed 50 % activities toward some pentonic acids and hexonic acids when compared with the activity of this enzyme to the natural substrate. Moreover, rSso_DHAD indicated relatively higher activity toward D-gluconate than any other hexonic acids tested in substrates. $K_m$ and $V_{max}$ values of rSso_DHAD were calculated as $0.54\;{\pm}\;0.04\;mM$ toward 2,3dihydroxyisovalerate and $2.42\;{\pm}\;0.19\;mM$ toward D-gluconate, and as $21.6\;{\pm}\;0.4\;U/mg$ toward 2,3-dihydroxyisovalerate and $13.8\;{\pm}\;0.4\;U/mg$ toward D-gluconate, respectively. In the study for biochemical properties, the enzyme shows maximal activity between $70^{\circ}C$ and $80^{\circ}C$, and the pH range of pH 7.5 to 8.5. The half life time at $80^{\circ}C$ was 30 min. A divalent metal ion, $Mn^{2+}$, was only powerful activators, whereas other metal ions made the enzyme activity reduced. $Hg^{2+}$, organic mercury, and EDTA also strongly inhibited enzyme activities. Particularly, the rSso_DHAD activity was very stable under aerobic condition although the counterparts reported from mesophiles had been deactivated by oxygen.

  • PDF

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Molecular Cloning and Characterization of the Gene Encoding Phytoene Desaturase from Kocuria gwangalliensis (Kocuria gwangalliensis 유래 phytoene desaturase 유전자의 cloning과 특성 연구)

  • Seo, Yong Bae;Choi, Seong Seok;Nam, Soo-Wan;Kim, Gun-Do
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.226-235
    • /
    • 2017
  • Carotenoids such as phytoene, lycopene, and ${\beta}-carotene$ are used as food colorants, animal feed supplements, and for human nutrition and cosmetic purposes. Previously, we reported the isolation of a novel marine bacterium, Kocuria gwangalliensis, which produces a pink-orange pigment. Phytoene desaturase (CrtI), encoded by the gene crtI, catalyzes lycopene formation from phytoene and is an essential enzyme in the early steps of carotenoid biosynthesis. CrtI is one of the key enzymes regulating carotenoid biosynthesis and has been implicated as a rate-limiting enzyme of the pathway in various carotenoid synthesizing organisms. Here, we report the cloning of the crtI gene responsible for lycopene biosynthesis from K. gwangalliensis. The gene consisted of 1,584 bases encoding 527 amino acid residues. The nucleotide sequence of the crtI gene was compared with that of other species, including Kocuria rhizophila and Myxococcus xanthus, and was found to be well conserved during evolution. An expression plasmid containing the crtI gene was constructed (pCcrt1), and Escherichia coli cells were transformed with this plasmid to produce a recombinant protein of approximately 57 kDa, corresponding to the molecular weight of phytoene desaturase. Lycopene biosynthesis was confirmed when the plasmid pCcrtI was co-transformed into E. coli containing the plasmid pRScrtEB carrying the crtE and crtB genes required for lycopene biosynthesis. The results from this study will provide valuable information on the primary structure of K. gwangalliensis CrtI at the molecular level.

Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury

  • Park, Jung Hwan;Kim, Dae Won;Shin, Min Jea;Park, Jinseu;Han, Kyu Hyung;Lee, Keun Wook;Park, Jong Kook;Choi, Yeon Joo;Yeo, Hyeon Ji;Yeo, Eun Ji;Sohn, Eun Jeong;Kim, Hyoung-Chun;Shin, Eun-Joo;Cho, Sung-Woo;Kim, Duk-Soo;Cho, Yong-Jun;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.582-587
    • /
    • 2020
  • It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.

Comparative Analysis of Local Green Tea in Korea by STS-RFLP (STS-RFLP법을 이용한 국내지역 재배녹차의 비교분석)

  • Cho, Kiu-Hyung;Jo, Aruna;Tsuge, Tomohiko;Kim, Jong-Cheol;Kim, Ru-Mi;Yoon, Ho-Sung;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1415-1419
    • /
    • 2010
  • Consumption of green tea has increased along with increasing concern regarding healthier lifestyles, and many brands of green tea are sold with a label indicating the region of Korea in which the tea was produced. However, there is little information on identifying the difference between the green tea cultivars according to the region they were grown. Here, 9 green tea cultivars collected from Hadong region, Bosung region, China and Japan were subjected to the STS-RFLP analysis. Using the coding and noncoding DNA regions of genes related to the phenylpropanoid pathway, such as phenylalanine ammonia-lyase, chalcone synthase and dihydroflavonol 4-reductase, we have identified the differences between green tea cultivars according to the region they were grown in. In this study, we showed a STS-RFLP method of green tea analysis which easily distinguished different kinds of tea using the primers as described. In addition, we identified that the green tea cultivars from Hadong and Bosung displayed a different profile when PAL intron was digested with Dde I, suggesting that a rapid authentication system for green tea cultivars grown in different regions in Korea is available.

Functional Analysis of a Grapevine UDP-Glucose Flavonoid Glucosyl Transferase (UFGT) Gene in Transgenic Tobacco Plants (담배 형질전환체를 이용한 포도 UDP-glucose flavonoid glucosyl transferase (UFGT) 유전자의 기능 분석)

  • Park, Ji-Yeon;Park, Sung-Chool;Pyee, Jae-Ho
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.292-297
    • /
    • 2010
  • Anthocyanin, a phenolic compound, is a pigment that shows blue or red color in the fruit, petal and other tissues. It is an important factor in grape berry skin pigment and accumulates only in the skin. This skin-specific accumulation of anthocyanin has been reported to be regulated by the ufgt gene which encodes UDP-glucose: flavonoid 3-O-glucosyltransferase that participates in the biosynthesis of anthocyanin. The ufgt gene is expressed only in berry skin, while the other genes involved in the biosynthetic pathway are expressed in both skin and flesh tissues. In order to determine whether anthocyanin accumulation is primarily regulated by compartment of UFGT, a ufgt cDNA clone was isolated from grape berry, its open reading frame was ligated in pBI121 vector in either a sense or an antisense orientation under the control of the CaMV35S promoter and the recombinant constructs were incorporated into tobacco plants. Several transgenic lines were selected and characterized to determine the level of expression of the grapevine ufgt transcript and endogenous homologs of tobacco. Compared to the wild-type, the amount of anthocyanins in sense transgenic plants increased by 44%, while the amount of anthocyanins in antisense transgenic plants decreased by 88%. In addition, the color of flowers became intense in the sense transgenic plants. These results suggest that over-expression or repression of the ufgt gene affected the accumulation of anthocyanin in flowers of tobacco.

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato (애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가)

  • Chun, Hyun-Jin;Park, Hyeong-Cheol;Goo, Young-Min;Kim, Tae-Won;Cho, Kwang-Soo;Cho, Hyeon-Seol;Yun, Dae-Jin;Chung, Woo-Sik;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

Molecular characterization and expression of a disintegrin and metalloproteinase with thrombospondin motifs 8 in chicken

  • Lee, Ra Ham;Lee, Seokhyun;Kim, Yu Ra;Kim, Sung-Jo;Lee, Hak-Kyo;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1366-1372
    • /
    • 2018
  • Objective: A disintegrin and metallopeptidase with thrombospondin motifs type 8 (ADAMTS8) is crucial for diverse physiological processes, such as inflammation, tissue morphogenesis, and tumorigenesis. The chicken ADAMTS8 (chADAMTS8) gene was differentially expressed in the kidney following exposure to different calcium concentrations, suggesting a pathological role of this protein in metabolic diseases. We aimed to examine the molecular characteristics of chADAMTS8 and analyze the gene-expression differences in response to toll-like receptor 3 (TLR3) stimulation. Methods: The ADAMTS8 mRNA and amino acid sequences of various species (chicken, duck, cow, mouse, rat, human, chimpanzee, pig, and horse) were retrieved from the Ensembl database and subjected to bioinformatics analyses. Reverse-transcription polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) experiments were performed with various chicken tissues and the chicken fibroblast DF-1 cell line, which was stimulated with polyinosinic-polycytidylic acid (poly[I:C]; a TLR3 ligand). Results: The chADAMTS8 gene was predicted to contain three thrombospondin type 1 (TSP1) domains, whose amino acid sequences shared homology among the different species, whereas sequences outside the TSP1 domains (especially the amino-terminal region) were very dif­ferent. Phylogenetic analysis revealed that chADAMTS8 is evolutionarily clustered in the same clade with that of the duck. chADAMTS8 mRNA was broadly expressed in chicken tissues, and the expression was significantly up-regulated in the DF-1 cells in response to poly(I:C) stimulation (p<0.05). These results showed that chADAMTS8 may be a target gene for TLR3 signaling. Conclusion: In this report, the genetic information of chADAMTS8 gene, its expression in chicken tissues, and chicken DF-1 cells under the stimulation of TLR3 were shown. The result suggests that chADAMTS8 expression may be induced by viral infection and correlated with TLR3-mediated signaling pathway. Further study of the function of chADAMTS8 during TLR3-dependent inflammation (which represents RNA viral infection) is needed and it will also be important to examine the molecular mechanisms during different regulation, depending on innate immune receptor activation.