• 제목/요약/키워드: Molecular electronics

검색결과 266건 처리시간 0.028초

Kinetic Monte Carlo Simulations for Defects Diffusion in Ion-implanted Crystalline

  • Jihyun Seo;Hwang, Ok-Chi;Ohseob Kwon;Kim, Kidong;Taeyoung Won
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.731-734
    • /
    • 2003
  • An atomistic process modeling, Kinetic Monte Carlo simulation, has the advantage of being both conceptually simple and extremely powerful. Instead of diffusion equations, it is based on the definitions of the interactions between individual atoms and defects. Those interactions can be derived either directly from molecular dynamics, first principles calculations, or from experiment. In this paper, as a simple illustration of the kinetic Monte Carlo we simulate defects (self-interstitials and vacancies) diffusion after ion implantation in Si crystalline.

  • PDF

Correlation between pit formation and phase separation in thick InGaN film on a Si substrate

  • Woo, Hyeonseok;Jo, Yongcheol;Kim, Jongmin;Cho, Sangeun;Roh, Cheong Hyun;Lee, Jun Ho;Kim, Hyungsang;Hahn, Cheol-Koo;Im, Hyunsik
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1558-1563
    • /
    • 2018
  • We demonstrate improved surface pit and phase separation in thick InGaN grown on a GaN/Si (111) substrate, using plasma-assisted molecular beam epitaxy with an indium modulation technique. The formation of surface pit and compositional inhomogeneity in the InGaN epilayer are investigated using atomic force microscopy, scanning electron microscopy and temperature-dependent photoluminescence. Indium elemental mapping directly reveals that poor compositional homogeneity occurs near the pits. The indium-modulation epitaxy of InGaN minimizes the surface indium segregation, leading to the reduction in pit density and size. The phase separation in InGaN with a higher pit density is significantly suppressed, suggesting that the pit formation and the phase separation are correlated. We propose an indium migration model for the correlation between surface pit and phase separation in InGaN.

AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구 (RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs)

  • Lee, Jong-Uk
    • 대한전자공학회논문지SD
    • /
    • 제41권11호
    • /
    • pp.29-34
    • /
    • 2004
  • 본 논문에서는 molecular beam epitaxy (MBE)로 성장한 AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs)의 선형성과 RF dispersion 특성을 조사하였다. 전극 길이가 0.5 ㎛인 AlGaN/InGaN HEMT는 최대 전류 밀도가 730mA/mm, 최대 전달정수가 156 mS/mm인 비교적 우수한 DC 특성과 함께, 기존의 AlGaN/GaN HEMT와는 달리 높은 게이트 전압에도 완만한 전류 전달 특성을 보여 선형성이 우수함을 나타내었다. 또한 여러 다른 온도에서 측정한 펄스 전류 특성에서 소자 표면에 존재하는 트랩에 의한 전류 와해 (current collapse) 현상이 발생되지 않음을 확인하였다. 이 연구 결과는 InGaN를 채널층으로 하는 GaN HEMT의 경우 선형성이 우수하고, 고전압 RF 동작조건에서 출력저하가 발생하지 않는 고출력 소자를 제작할 수 있음을 보여준다.

InP 기판에 성장한 자발형성 InAs/InAl(Ga)As 양자점의 구조 및 광학적 특성 (Structural and Optical Properties of Self-assembled InAs/InAl(Ga)Ae Quantum Dots on InP)

  • 김진수;이진홍;홍성의;곽호상;최병석;오대곤
    • 한국진공학회지
    • /
    • 제15권2호
    • /
    • pp.194-200
    • /
    • 2006
  • 분자선증착기 (Molecular beam epitaxy. MBE)를 이용하여 InP (001) 기판에 자발형성 (Self-assembled) InAs/InAlAs, InAs/InAlGaAs 양자점 (quantum dots, QDs)을 형성하고 구조 및 광학적 특성을 원자력간현미경(Atomic force microscopy, AFM), 투과전자현미경 (Transmission electron microscopy, TEM), 상온 포토루미네슨스 (Photoluminescence, PL) 실험을 통하여 분석하였다. AFM 측정을 통해 표면 형태를 분석한 결과 InAs 양자구조는 기저물질의 표면상태에 따라 양자대쉬, 비대칭적인 형태를 갖는 양자점, 대칭적인 형태를 갖는 양자점과 같이 다양하게 성장되었다. InAlGaAs 물질을 장벽층으로 하는 InAs 양자점의 평균크기는 폭이 대략 23 nm, 높이가 약 2 nm 이었다. 성장조건을 다양하게 변화시켜 광통신시스템에 중요한 파장중의 하나인 $1.55{\mu}m$ 발광파장을 갖는 InAs 양자점을 형성하였다.

InP/InGaAs/InP 분포귀환형 회절격자 위에 성장된 InAs/InAlGaAs 양자점의 구조적.광학적 특성 (Structural and Optical Characteristics of InAs/InAlGaAs Quantum Dots Grown on InP/InGaAs/InP Distributed Feedback Grating Structure)

  • 곽호상;김진수;이진홍;홍성의;최병석;오대곤;조용훈
    • 한국진공학회지
    • /
    • 제15권3호
    • /
    • pp.294-300
    • /
    • 2006
  • 금속유기화학증착기 (metal-organic chemical vapor deposition)를 이용하여 분포귀환형 (distributed feed back) InP/InGaAs/InP 회절격자 구조를 제작하고 원자력간현미경 (atomic force microscopy)과 주사전자현미경 (scanning electron microscopy) 실험을 통해 표면 및 단면을 분석하였다. 그 위에 분자선증착기(molecular beam epitaxy)법을 이용하여 자발형성 (self-assembled) InAs/InAlGaAs 양자점 (quantum dot)을 성장하고, 광학적 특성을 온도변화 광여기 발광 (photoluminescence)으로 회절격자 구조 없이 성장한 양자점 시료와 비교 분석하였다. 회절격자의 간격 대비 폭의 비가 약 30%인 InP/InGaAs/InP 회절격자가 제작되었으며, 그 위에 성장된 양자점의 경우 상온 파장이 1605 nm에서 PL이 관찰되었다. 이는 회절격자 없이 같은 조건에서 성장된 시료의 상온 파장인 1587 nm 보다 장파장에서 발광하였으며, 회절격자의 영향으로 양자점 크기가 변하였음을 조사하였다.

트라이볼로지 관점에서의 그래핀 분자시뮬레이션 연구동향 (Review on Molecular Simulation of Graphene from a Tribological Perspective)

  • 김현준;정구현
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.55-63
    • /
    • 2020
  • Recently, graphene has attracted considerable attention owing to its unique electrical, optical, thermal, and mechanical properties. The broad spectrum of applications from optics, sensors, and electronics to biodevice have been proposed based on these properties. In particular, graphene has been proposed as a protective coating layer and solid lubricant for microdevices and nanodevices because of its high mechanical strength, chemical inertness, and low friction characteristics. During the past decade, extensive efforts have been made to explore the tribological characteristics of graphene under various conditions and to expand its applicability. In addition to the experimental approaches, the molecular simulations performed provide fundamental insights into the friction and wear characteristics of graphene resulting from molecular interactions. This work is a review of the studies conducted over the past decade on the tribological characteristics of graphene using molecular simulation. These studies demonstrate the principal mechanisms of the superlubricity of graphene and help clarify the influences of surface conditions on tribological behavior. In particular, the investigation of the effects of the number of layers, strength of adhesion to the substrate, surface roughness, and commensurability provides deeper insights into the tribological characteristics of graphene. These fundamental understandings can help elucidate the feasibility of graphene as a protective coating layer and solid lubricant for microdevices and nanodevices.