• Title/Summary/Keyword: Molecular electronic device

Search Result 108, Processing Time 0.025 seconds

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPC)/$C_{60}$ devices (Zinc phthalocyanine(ZnPC)/$C_{60}$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Oh, Hyun-Seok;Jang, Kyung-Uk;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.31-34
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine$(C_{60})$ as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar celt devices using the Xe lamp as a light source.

  • PDF

Photovoltaic Effects in Organic Semiconductor $CuPc/C_{60}$ depending on Cathodes ($CuPc/C_{60}$ 구조 유기 반도체에서의 음전극의 종류에 따른 광기전 효과 연구)

  • Oh, Hyun-Seok;Jang, Kyung-Wook;Lee, Sung-Ill;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.181-184
    • /
    • 2004
  • Organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost high-energy conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar-cell devices based on copper-phthalocyanine(CuPc) as a donor(D) and fullerene($C_{60}$) as an electron acceptor(A) with doped charge transport layers, and BCP as an exciton blocking layer(EBL). We have measured photovoltaic characteristics of the solar-cell devices using the xenon lamp as a light source.

  • PDF

Organic Electroluminescence using Hyperbranched Poly(Phenylene Vinylene) (하이퍼브랜치 PPV를 이용한 유기 EL 소자의 제작)

  • In, In-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • Hyperbranched conjugated polymers (p-HPPV and m-HPPV) with para and meta linkages were synthesized from $A_2$ and $B_4$ type monomers through Wittig polycondensation. The synthesized p-HPPV and m-HPPV were completely soluble in common organic solvents such as chloroform, tetrahydrofuran, 1,2-dichloroethane, etc. and thermal gravimetric analyses showed that p-HPPV and m-HPPV are stable up to $350^{\circ}C$. The molecular weights (from GPC), UV-visible, and photoluminescence maximum peaks of p-HPPV and m-HPPV are characterized in detail. The fabricated EL devices using the synthesized hyperbranched polymers, (ITO/(p-HPPV or m-HPPV)/Al), showed EL emission at about 507 nm and 481 nm (681 nm), respectively. Especially, EL device from m-HPPV were found to exhibit nearly white emission with approximate CIE coordinates of (0.31, 0.34) compared with (0.310, 0.316) of NTSC white color at $100\;cd/m^2$. The good photophysical properties combine with good film-form ability could make these hyperbranched polymers to be a potential candidate for the EL materials.

Fabrication and Characteristics of Non-Solvent Silica-Acryl Monomer Hybrid Sol for Optical Device (광학용 무용제 실리카-아크릴 모노머 하이브리드 졸 기반의 코팅액 제조 및 특성 평가)

  • Kang, Woo Kyu;Jang, Gun Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.246-251
    • /
    • 2019
  • A solvent free, highly concentrated silica-acryl monomer hybrid sol was synthesized using aqueous colloidal silica as a precursor. The effects of the silica particle size, type of surface treatment agent employed, and silica content on the formation of the hybrid sol were systematically studied. The optical and physical properties of the coating solution prepared using the hybrid sol were also characterized. The viscosity of the hybrid sol tended to decrease as the particle size of the silica and the molecular weight of the surface treatment agent increased. The PET substrate coated with MPTMS-Mix (mixture, 70 wt%) solution showed the highest surface hardness (6 H) and low surface roughness ($Ra=0.044{\mu}m$), which could be attributed to an increase in packing density caused by the infiltration of small particles into the pores formed between larger particles.

Stable blue light emitting polyfluorenes with good solution processibility

  • Hwang, Do-Hoon;Lee, Ji-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1057-1059
    • /
    • 2003
  • New polyfluorene derivatives, poly[9,9-bis(4' n-octyloxyphenyl)] fluorene (PAPF-8) and poly[9,9-bis(4'-(2",7"-dimethylocyloxy)phenyl)] fluorene (PAPF-10) were synthesized from the monomers, 2,7-dibromo-9,9-bis[4' (2"-ethylhexyloxy)benzene] fluorene and 2,7-dibromo-9,9-bis[4' (2", 7"-dimethyloctyloxybenzene)] fluorene through the Ni(0) mediated polymerization. The copolymers were characterized using FT-IR spectroscopy, UV-vis spectroscopy, TGA, photoluminescence (PL) & electroluminescence (EL) spectroscopy, elementa analysis, and molecular weight studies. The synthesized POPF-8 and POPF-10 showed a pure blue emission without any spectral change upon thermal annealing and EL device operation.

  • PDF

Epitaxial Growth of Bi2Se3 on a Metal Substrate

  • Jeon, Jeong-Heum;Jang, Won-Jun;Yun, Jong-Geon;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.306-306
    • /
    • 2011
  • Three dimensional(3D) topological insulators(TIs) of Bi binary alloys are characterized by a bulk energy gap with strong spin-orbit coupling and metallic surface states protected by time-reversal symmetry. It was reported that film forms of such materials were advantageous over bulk forms due to less defect density and better crystallinity. So far, the films have been prepared on several substrates including semiconductors and graphene. But, there were no studies on metal substrates. For electronic transport experiments and device applications, it is necessary to know epitaxial relation between TIs and metal electrodes. In this study, Atomically flat films of Bi2Se3 were grown on a Au(111) metal substrate by in-situ molecular beam epitaxy. Using home-built scanning tunneling microscope, we observed hexagonal atomic structures which corresponded to the outmost selenium atomic layer of Bi2Se3. Triangular-shaped defects known as Selenium vacancy were also found.

  • PDF

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2505-2511
    • /
    • 2014
  • Indium oxide nanocrystals ($In_2O_3$ NCs) with sizes of 5.5 nm-10 nm were synthesized by hot injection of the mixture precursors, indium acetate and oleic acid, into alcohol solution (1-octadecanol and 1-octadecence mixture). Field emission transmission electron microscopy (FE-TEM), High resolution X-Ray diffraction (X-ray), Nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FT-IR) were employed to investigate the size, surface molecular structure, and crystallinity of the synthesized $In_2O_3$ NCs. When covered by oleic acid as a capping group, the $In_2O_3$ NCs had a high crystallinity with a cubic structure, demonstrating a narrow size distribution. A high mobility of $2.51cm^2/V{\cdot}s$ and an on/off current ratio of about $1.0{\times}10^3$ were observed with an $In_2O_3$ NCs thin film transistor (TFT) device, where the channel layer of $In_2O_3$ NCs thin films were formed by a solution process of spin coating, cured at a relatively low temperature, $350^{\circ}C$. A size-dependent, non-monotonic trend on electron mobility was distinctly observed: the electron mobility increased from $0.43cm^2/V{\cdot}s$ for NCs with a 5.5 nm diameter to $2.51cm^2/V{\cdot}s$ for NCs with a diameter of 7.1 nm, and then decreased for NCs larger than 7.1 nm. This phenomenon is clearly explained by the combination of a smaller number of hops, a decrease in charging energy, and a decrease in electronic coupling with the increasing NC size, where the crossover diameter is estimated to be 7.1 nm. The decrease in electronic coupling proved to be the decisive factor giving rise to the decrease in the mobility associated with increasing size in the larger NCs above the crossover diameter.

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Study on the characteristics of white organic light-emitting diodes using a new material

  • Shim, Hye-Yeon;Jeong, Ji-Hoon;Kwon, Hyuk-Joo;Cho, Young-Jun;Kim, Bong-Ok;Kim, Sung-Min;Kim, Chi-Sik;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.688-691
    • /
    • 2004
  • In this study, we synthesized a new red emitting material of a Red225 doped into $Alq_3$ (tris(8-quinolinolato)aluminum (III)) and fabricated white organic light-emitting diodes (OLEDs) with a simple device structure. With a blue emitting material of DPVBi (4,4'-bis(2,2'-diphenylvinyl)1,1'-biphenyl) that can transfer effectively both a hole and an electron, OLEDs with a narrow emission layer could be possible without a hole-blocking layer. Consequently, the driving voltage and stability of devices have been improved. The devices show the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.36, 0.35) at luminance of 2000 cd/$m^2$. The luminous efficiency is about 3.5 cd/A, luminance is about 12000 cd/$m^2$ and current density is about 350 mA/$cm^2$ at 12 V, respectively.

  • PDF