• Title/Summary/Keyword: Molecular diversity

Search Result 888, Processing Time 0.034 seconds

Studies on Biological Diversity of Firefly in Japan

  • Suzuki, Hirobumi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.91-105
    • /
    • 2001
  • Taxonomic and phylogenetic studies of firefly in Japan have been reviewed. Fourty-six lampyrid species and one rhagophthalmid are distributed in the Japanese Islands including the Ryukyus. Recently, molecular phylogenetic approaches have been employed in the systematic study of firefly using mitochondrial and luciferase genes. Based on the molecular phylogenetic trees, evolutionary process of flashing patterns related strictly to mating behavior was estimated. Furthermore, genetic diversity studies revealed geographic differentiation patterns within species, and conservation measures of firefly were proposed to protect genetic resources endemic to the localities.

  • PDF

Ecological and Genetic Biodiversity of Corbicula leana in the Nakdong River and the Nam River

  • Huh, Man-Kyu;Lee, Bok-Kyu;Kim, Byung-Kee;Heo, Youn-Seong;Lee, Hak-Young
    • The Korean Journal of Ecology
    • /
    • v.28 no.2
    • /
    • pp.63-67
    • /
    • 2005
  • The eleven local samples of six species including Corbicula leana examined in this study were collected from the Nam River and the Nakdong River in Korea. Buzas's new formula was used to evaluate the ecological biodiversity among eleven populations and six species. In addition, enzyme electrophoresis was used to genetic diversity within and among populations of C. leana. The upper populations of the river have fewer species than the middle and low populations of this river. The genetic diversity trends to increase from the source of the main river to the mouth. It suggests that the population of downstream might be expanded toward upstream.

An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria

  • Kim, Kiyoon;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Denver, Walitang;Chanratan, Mak;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.144-156
    • /
    • 2016
  • Soil is a dynamic biological system, in which it is difficult to determine the composition of microbial communities. Knowledge of microbial diversity and function in soils are limited because of the taxonomic and methodological limitations associated with studying the organisms. In this review, approaches to measure microbial diversity in soil were discussed. Research on soil microbes can be categorized as structural diversity, functional diversity and genetic diversity studies, and these include cultivation based and cultivation independent methods. Cultivation independent technique to evaluate soil structural diversity include different techniques such as Phospholipid Fatty Acids (PLFA) and Fatty Acid Methyl Ester (FAME) analysis. Carbon source utilization pattern of soil microorganisms by Community Level Physiological Profiling (CLPP), catabolic responses by Substrate Induced Respiration technique (SIR) and soil microbial enzyme activities are discussed. Genetic diversity of soil microorganisms using molecular techniques such as 16S rDNA analysis Denaturing Gradient Gel Electrophoresis (DGGE) / Temperature Gradient Gel Electrophoresis (TGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP), Single Strand Conformation Polymorphism (SSCP), Restriction Fragment Length Polymorphism (RFLP) / Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Ribosomal Intergenic Spacer Analysis (RISA) are also discussed. The chapter ends with a final conclusion on the advantages and disadvantages of different techniques and advances in molecular techniques to study the soil microbial diversity.

Molecular Phylogeny and Morphology Reveal the Underestimated Diversity of Mortierella (Mortierellales) in Korea

  • Lee, Jae-Sung;Nam, Bora;Lee, Hyang Burm;Choi, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.375-382
    • /
    • 2018
  • Members of the genus Mortierella (Mortierellales) are filamentous fungi, which are found on nearly all substrates, but more frequently in soil. Till date, 7 species of Mortierella have been reported in Korea, but being a ubiquitous group with high species diversity in temperate zones, this number is still low. During a survey of fungal biodiversity in Korea, we collected many isolates of Mortierella, and through morphological and molecular phylogenetic analyses, identified them to be 3 previously unrecorded species, namely, M. chienii, M. epicladia, and M. gamsii. A total of 10 Mortierella species in Korea, including the 3 species reported in the present study, are widely distributed in 5 out of 7 phylogenetic groups of this genus. This indicates that the diversity of Mortierella was so far underestimated in Korea. Multi-locus sequence analysis is required to provide a more reliable backbone for some uncertain phylogenetic groupings and to more clearly define a species of Mortierella, which would encourage deeper research in the diversity and ecological roles of Mortierella and allied genera.

Genetic Diversity of the Pear Scab Fungus Venturia nashicola in Korea

  • Choi, Eu Ddeum;Kim, Gyoung Hee;Park, Sook-Young;Song, Jang Hoon;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.76-86
    • /
    • 2019
  • Scab disease caused by Venturia nashicola is of agroeconomic importance in cultivation of Asian pear. However, little is known about the degree of genetic diversity in the populations of this pathogen. In this study, we collected 55 isolates from pear scab lesions in 13 major cultivation areas in Korea and examined the diversity using sequences of internal transcribed spacer (ITS) region, ${\beta}$-tubulin (TUB2), and translation elongation factor-$1{\alpha}$ ($TEF-1{\alpha}$) genes as molecular markers. Despite a low level of overall sequence variation, we found three distinctive subgroups from phylogenetic analysis of combined ITS, TUB2, and $TEF-1{\alpha}$ sequences. Among the three subgroups, subgroup 1 (60% of isolates collected) was predominant compared to subgroup 2 (23.6%) or subgroup 3 (16.4%) and was distributed throughout Korea. To understand the genetic diversity among the subgroups, RAPD analysis was performed. The isolates yielded highly diverse amplicon patterns and none of the defined subgroups within the dendrogram were supported by bootstrap values greater than 30%. Moreover, there is no significant correlation between the geographical distribution and the subgroups defined by molecular phylogeny. Our data suggest a low level of genetic diversification among the populations of V. nashicola in Korea.

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Seasonal variation in longitudinal connectivity for fish community in the Hotancheon from the Geum River, as assessed by environmental DNA metabarcoding

  • Hyuk Je Lee;Yu Rim Kim;Hee-kyu Choi;Seo Yeon Byeon;Soon Young Hwang;Kwang-Guk An;Seo Jin Ki;Dae-Yeul Bae
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.32-48
    • /
    • 2024
  • Background: Longitudinal connectivity in river systems strongly affects biological components related to ecosystem functioning, thereby playing an important role in shaping local biodiversity and ecosystem health. Environmental DNA (eDNA)-based metabarcoding has an advantage of enabling to sensitively diagnose the presence/absence of species, becoming an efficient/effective approach for studying the community structure of ecosystems. However, little attention has been paid to eDNA-based biomonitoring for river systems, particularly for assessing the river longitudinal connectivity. In this study, by using eDNA we analyzed and compared species diversity and composition among artificial barriers to assess the longitudinal connectivity of the fish community along down-, mid- and upstream in the Hotancheon from the Geum River basin. Moreover, we investigated temporal variation in eDNA fish community structure and species diversity according to season. Results: The results of species detected between eDNA and conventional surveys revealed higher sensitivity for eDNA and 61% of species (23/38) detected in both methods. The results showed that eDNA-based fish community structure differs from down-, mid- and upstream, and species diversity decreased from down to upstream regardless of season. We found that there was generally higher species diversity at the study sites in spring (a total number of species across the sites [n] = 29) than in autumn (n = 27). Nonmetric multidimensional scaling and heatmap analyses further suggest that there was a tendency for community clusters to form in the down-, mid- and upstream, and seasonal variation in the community structure also existed for the sites. Dominant species in the Hotancheon was Rhynchocypris oxycephalus (26.07%) regardless of season, and subdominant species was Nipponocypris koreanus (16.50%) in spring and Odontobutis platycephala (15.73%) in autumn. Artificial barriers appeared to negatively affect the connectivity of some fish species of high mobility. Conclusions: This study attempts to establish a biological monitoring system by highlighting the versatility and power of eDNA metabarcoding in monitoring native fish community and further evaluating the longitudinal connectivity of river ecosystems. The results of this study suggest that eDNA can be applied to identify fish community structure and species diversity in river systems, although some shortcomings remain still need to be resolved.

Molecular detection and genetic diversity of bovine papillomavirus in dairy cows in Xinjiang, China

  • Meng, Qingling;Ning, Chengcheng;Wang, Lixia;Ren, Yan;Li, Jie;Xiao, Chencheng;Li, Yanfang;Li, Zhiyuan;He, Zhihao;Cai, Xuepeng;Qiao, Jun
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.50.1-50.10
    • /
    • 2021
  • Background: Bovine papillomatosis is a type of proliferative tumor disease of skin and mucosae caused by bovine papillomavirus (BPV). As a transboundary and emerging disease in cattle, it poses a potential threat to the dairy industry. Objectives: The aim of this study is to detect and clarify the genetic diversity of BPV circulating in dairy cows in Xinjiang, China. Methods: 122 papilloma skin lesions from 8 intensive dairy farms located in different regions of Xinjiang, China were detected by polymerase chain reaction. The genetic evolution relationships of various types of BPVs were analyzed by examining this phylogenetic tree. Results: Ten genotypes of BPV (BPV1, BPV2, BPV3, BPV6, BPV7, BPV8, BPV10, BPV11, BPV13, and BPV14) were detected and identified in dairy cows. These were the first reported detections of BPV13 and BPV14 in Xinjiang, Mixed infections were detected, and there were geographical differences in the distribution of the BPV genotypes. Notably, the BPV infection rate among young cattle (< 1-year-old) developed from the same supply of frozen sperm was higher than that of the other young cows naturally raised under the same environmental conditions. Conclusions: Genotyping based on the L1 gene of BPV showed that BPVs circulating in Xinjiang China displayed substantial genetic diversity. This study provided valuable data at the molecular epidemiology level, which is conducive to developing deep insights into the genetic diversity and pathogenic characteristics of BPVs in dairy cows.