• Title/Summary/Keyword: Molecular control

Search Result 2,961, Processing Time 0.033 seconds

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

Molecular Imaging of Stretch-Induced Tissue Factor Expression in Carotid Arteries with Intravascular Ultrasound

  • Park Byung-Rae
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Molecular imaging with targeted contrast agents enables tissues to be distinguished by detecting specific cell-surface receptors. In the present study, a ligand-targeted acoustic nanoparticle system is used to identify angioplasty-induced expression of tissue factor by smooth muscle cell within carotid arteries. Pig carotid arteries were overstretched with balloon catheters, treated with tissue factor-targeted or a control nanoparticle system, and imaged with intravascular ultrasound before and after treatment. Tissue factor-targeted emulsion bound and increased the echogenicity and gray-scale levels of overstretched smooth muscle cell within the tunica media, versus no change in contralateral control arteries. Expression of stretch-induced tissue factor in carotid artery media was confirmed by immunohistochemistry. The potential for abnormal thrombogenicity of balloon-injured arteries, as reflected by smooth muscle expression of tissue factor, was imaged using a novel, targeted, nanoparticulate ultrasonic contrast agent.

  • PDF

Phase Transitions in Cells and the Structure of Chromatins (세포에서의 상전이와 크로마틴 구조)

  • Kim, Hajin;Yoo, Jejoong
    • Vacuum Magazine
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2018
  • Phase transition is not unique to solid state systems or homogeneous molecular systems but it is also observed in highly heterogeneous biological systems. Phase transition and phase separation in cells are recently being found to be central to many biological functions by temporarily and locally controlling the storage and exchange of certain proteins and RNAs. There are also clues suggesting them to be playing pivotal roles in the spatial organization of chromosomes into topological domains and its time-dependent control. Here we introduce early efforts to explain at the molecular level how the spatiotemporal organization of chromosomes are programmed and modulated by the sequence and chemical modifications of the DNA. Continuing works may provide a physical framework to understand the molecular level control of chromosome structure and dynamics that determine the epigenetic state and the fate of the cells.

J-aggregates of Merocyanine Dye : formation and structural change on chemical and thermal treatments (메로시아닌 색소의 J-회합체 ; 형성과 열.화학적인 처리에 의한 변화)

  • Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1398-1400
    • /
    • 1998
  • The physical properties of the LB films with merocyanine dyes have been published and attract attention due to the possibility of molecular structure control. The evaluation of the thin films was focused for the purpose of molecular structure control. The molecular structure in the case of the thin films with dyes can be examine by optical absorption spectra measurements. In the case of optical absorption spectra of the LB films by the heat treatment at $70^{\circ}C$ in the air, both of the shifted absorption bands decay and a monomer absorption peak of about 530 nm appears instead. And, the formation and dissociation of J-aggregates, anisotropic behavior was no longer observed in the heat treated merocyanine dyes LB films. In the results, study of the merocyanine dyes LB films using optical absorption spectra would an interesting problem of absorption peak shifts and mixed components.

  • PDF

Effects of Ligands on the Allosteric Property of Tryptophan Synthase (트립토판 합성효소의 이소조절성에 미치는 리간드)

  • Kim, Il;Shin, Hye-Ja;Im, Woon-Ki;Kim, Han-Do
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.14-16
    • /
    • 2004
  • Various ligands function as regulators in the allosteric control of tryptophan synthase. Effects of the monovalent cations and glycerophosphate on the mutant tryptophan synthases were examined in the presence of L-serine. The results showed that these compounds might play roles in the allosteric control of the proteins.

The Effect of Molecular Weight on the Gelation Behavior of Regenerated Silk Solutions

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.183-186
    • /
    • 2011
  • The various molecular weight (MW) regenerated silk fibroins were prepared with different dissolution condition and the effect of MW on the gelation behavior of regenerated aqueous silk fibroin (SF) solution was investigated. The result of gelation time measurement indicated that the gelation of SF aqueous solution was accelerated by the increase of MW and SF concentration. When formic acid was added in SF aqueous solution, the gelation time of SFL and SFC30 aqueous solution showed a significant decreaseat 0.03% formic acid addition. In case of the lowest MW sample, SFC180, SF molecules became aggregated and precipitated without gelation after 28 days storage time. These findings indicate that MW control of SF can be utilized to control the gelation time of SF aqueous solution.

Molecular cloning and restriction analysis of aspartokinase gene (HOM3) in the yeast, saccharomyces cerevisiae (아스파테이트족 아미노산 대사에 관여하는 효모유전자(HOM3)의 클로닝 및 구조분석)

  • 최승일;이호주
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The yeast gene HOM3 encodes aspartokinase, which catalyses the first step (aspartate to and from beta-aspartyl phosphate) of common pathway to threonine and methionine. The yeast HOM3 gene expression is known to be regulated by threonine and methionine specific control, and also by general control of amino acid biosynthesis. Isolation and characterization of the HOM3 gene are essential for the molecular genetic study on its regulation of expression. A recombinant plasmid pSC3 (15.5kb, vector YCp50) has been cloned into E. coli HB101 from yeast genomic library through their complementing activity of HOM3 mutation in a yeast recipient strain M34-24B. Organization of the plasmid was characterized by delineation of restriction cleavage sites in the insert fragment.

  • PDF

Deciphering the molecular mechanisms of epitranscriptome regulation in cancer

  • Han, Seung Hun;Choe, Junho
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.89-97
    • /
    • 2021
  • Post-transcriptional regulation is an indispensable cellular mechanism of gene expression control that dictates various cellular functions and cell fate decisions. Recently, various chemical RNA modifications, termed the "epitranscriptome," have been proposed to play crucial roles in the regulation of post-transcriptional gene expression. To date, more than 170 RNA modifications have been identified in almost all types of RNA. As with DNA modification-mediated control of gene expression, regulation of gene expression via RNA modification is also accomplished by three groups of proteins: writers, readers, and erasers. Several emerging studies have revealed that dysregulation in RNA modification is closely associated with tumorigenesis. Notably, the molecular outcomes of specific RNA modifications often have opposite cellular consequences. In this review, we highlight the current progress in the elucidation of the mechanisms of cancer development due to chemical modifications of various RNA species.

The Instructional Effect of a Four-stage Problem Solving Approach Visually Emphasizing the Molecular Level of Matter upon Students' Conceptions and Problem Solving Ability (물질의 분자 수준을 시각적으로 강조하는 4단계 문제 해결식 수업이 학생의 개념과 문제 해결 능력에 미치는 효과)

  • Noh, Tae-Hee;Moon, Kyung-Moon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.313-321
    • /
    • 1997
  • The purpose of this study was to investigate the instructional effect of a four-stage problem solving approach visually emphasizing the molecular level of matter upon students' conceptions and problem solving ability. On the basis of the research results regarding molecular representation in learning chemistry, problem-solving instruction, and the effect of visual materials, the instructional strategy was developed while considering Korean educational situations. The treatment and control groups (2 classes) were selected from a girls' high school in Seoul and taught about stoichiometry, gas, liquid, solid, and solution for 13 weeks. For the treatment group, 52 charts were supplied in order to emphasize the molecular level of matter and/or 4 stage problem solving strategy-understanding, planning, solving, and reviewing. For the control group, traditional instruction was used. Before the instructions, the Group Assessment of Logical Thinking and the Spatial Ability Test were administered, and their scores were used as covariate and blocking variable, respectively. After the instructions, students' conceptions and problem solving ability were measured by the Chemistry Conceptions Test (CCT) and the Chemistry Problem Solving Ability Test (CPSAT), respectively. The results indicated that the CCT scores of the treatment group were significantly higher than those of the control group. The students in the treatment group also exhibited less misconceptions than those in the control group. However, there was not significant difference for the CPSAT scores. No interaction with students' spatial ability was found for both students' conceptions and problem solving ability. Educational implications are discussed.

  • PDF

Polymorphonuclear Neutrophil Dysfunctions in Streptozotocin-induced Type 1 Diabetic Rats

  • Nabi, A.H.M. Nurun;Islam, Laila N.;Rahman, Mohanmmad Mahfuzur;Biswas, Kazal Boron
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • Since conflicting results have been reported on non-specific immune response in type 1 diabetes, this study evaluates polymorphonuclear neutrophil (PMN) functions in the infection free Long Evan diabetic rats (type 1) by using tests that include: polarization assay, phagocytosis of baker's yeasts (Saccharomyces cerevisiae) and nitroblue tetrazolium (NBT) dye reduction. Polarization assay showed that neutrophils from diabetic rats were significantly activated at the basal level compared to those from the controls (p < 0.001). After PMN activation with N-formyl-methionyl-leucyl-phenylalanine (FMLP), control neutrophils were found to be more polarized than those of the diabetic neutrophils and the highest proportions of polarization were found to be 67% and 57% at $10^{-7}\;M$ FMLP, respectively. In the resting state, neutrophils from the diabetic rats reduced significantly more NBT dye than that of the controls (p < 0.001). The percentages of phagocytosis of opsonized yeast cells by the neutrophils from control and diabetic rats were 87% and 61%, respectively and the difference was statistically significant (p < 0.001). Evaluation of the phagocytic efficiency of PMNs revealed that control neutrophils could phagocytose $381{\pm}17$ whereas those from the diabetic rats phagocytosed $282{\pm}16$ yeast cells, and the efficiency of phagocytosis varied significantly (p < 0.001). Further, both the percentages of phagocytosis and the efficiency of phagocytosis by the diabetic neutrophils were inversely related with the levels of their corresponding plasma glucose (p = 0.02; r = -0.498 and p < 0.05; r = -0.43, respectively), which indicated that increased plasma glucose reduced the phagocytic ability of neutrophils. Such relationship was not observed with the control neutrophils. These data clearly indicate that PMN functions are altered in the streptozotocin (STZ) - induced diabetic rats, and hyperglycemia may be the cause for the impairment of their functions leading to many infectious episodes.