Browse > Article
http://dx.doi.org/10.5483/BMBRep.2021.54.2.212

Deciphering the molecular mechanisms of epitranscriptome regulation in cancer  

Han, Seung Hun (Department of Life Science, College of Natural Sciences, Hanyang University)
Choe, Junho (Department of Life Science, College of Natural Sciences, Hanyang University)
Publication Information
BMB Reports / v.54, no.2, 2021 , pp. 89-97 More about this Journal
Abstract
Post-transcriptional regulation is an indispensable cellular mechanism of gene expression control that dictates various cellular functions and cell fate decisions. Recently, various chemical RNA modifications, termed the "epitranscriptome," have been proposed to play crucial roles in the regulation of post-transcriptional gene expression. To date, more than 170 RNA modifications have been identified in almost all types of RNA. As with DNA modification-mediated control of gene expression, regulation of gene expression via RNA modification is also accomplished by three groups of proteins: writers, readers, and erasers. Several emerging studies have revealed that dysregulation in RNA modification is closely associated with tumorigenesis. Notably, the molecular outcomes of specific RNA modifications often have opposite cellular consequences. In this review, we highlight the current progress in the elucidation of the mechanisms of cancer development due to chemical modifications of various RNA species.
Keywords
Cancer; Epitranscriptomics; Gene expression; Post-transcriptional regulation; RNA modification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu FG, Clark W, Luo GZ et al (2016) ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 816-828. e16   DOI
2 Macari F, El-Houfi Y, Boldina G et al (2016) TRM6/61 connects PKCalpha with translational control through tRNAi(Met) stabilization: impact on tumorigenesis. Oncogene 35, 1785-1796   DOI
3 Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441-446   DOI
4 Seo KW and Kleiner RE (2020) YTHDF2 Recognition of N-1-methyladenosine (m(1)A)-modified RNA is associated with transcript destabilization. Acs Chemical Biol 15, 132-139   DOI
5 Chen Z, Qi M, Shen B et al (2019) Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 47, 2533-2545   DOI
6 Somme J, Van Laer B, Roovers M, Steyaert J, Versees W and Droogmans L (2014) Characterization of two homologous 2'-O-methyltransferases showing different specificities for their tRNA substrates. RNA 20, 1257-1271   DOI
7 Rebane A, Roomere H and Metspalu A (2002) Locations of several novel 2'-O-methylated nucleotides in human 28S rRNA. BMC Mol Biol 3, 1   DOI
8 Dai Q, Moshitch-Moshkovitz S, Han DL et al (2017) Nm-seq maps 2'-O-methylation sites in human mRNA with base precision (vol 14, pg 695, 2017). Nat Methods 15, 226-227
9 Dimitrova DG, Teysset L and Carre C (2019) RNA 2'-O-methylation (Nm) modification in human diseases. Genes (Basel) 10, 117   DOI
10 Belanger F, Stepinski J, Darzynkiewicz E and Pelletier J (2010) Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase. J Biol Chem 285, 33037-33044   DOI
11 Werner M, Purta E, Kaminska KH et al (2011) 2'-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res 39, 4756-4768   DOI
12 Ching YP, Zhou HJ, Yuan JG, Qiang BQ, Kung Hf HF and Jin DY (2002) Identification and characterization of FTSJ2, a novel human nucleolar protein homologous to bacterial ribosomal RNA methyltransferase. Genomics 79, 2-6   DOI
13 Koh CM, Gurel B, Sutcliffe S et al (2011) Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol 178, 1824-1834   DOI
14 Su H, Xu T, Ganapathy S et al (2014) Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33, 1348-1358   DOI
15 Marcel V, Ghayad SE, Belin S et al (2013) p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318-330   DOI
16 Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40, 5023-5033   DOI
17 Yang X, Yang Y, Sun BF et al (2017) 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res 27, 606-625   DOI
18 Motorin Y, Lyko F and Helm M (2010) 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 38, 1415-1430   DOI
19 Bohnsack KE, Hobartner C and Bohnsack MT (2019) Eukaryotic 5-methylcytosine (m(5)C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel) 10, 102   DOI
20 Frye M and Watt FM (2006) The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Current Biol 16, 971-981   DOI
21 Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395-398   DOI
22 Ramanathan A, Robb GB and Chan SH (2016) mRNA capping: biological functions and applications. Nucleic Acids Res 44, 7511-7526   DOI
23 Trixl L and Lusser A (2019) The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA 10, e1510   DOI
24 Chen X, Li A, Sun BF et al (2019) 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol 21, 978-990   DOI
25 Xue S, Xu H, Sun Z et al (2019) Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem Biophys Res Commun 520, 60-66   DOI
26 Tomikawa C (2018) 7-methylguanosine modifications in transfer RNA (tRNA). Int J Mol Sci 19, 4080   DOI
27 Pandolfini L, Barbieri I, Bannister AJ et al (2019) METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell 74, 1278-1290 e1279   DOI
28 Zhang LS, Liu C, Ma HH et al (2019) Transcriptomewide mapping of internal N-7-methylguanosine methylome in mammalian mRNA. Mol Cell 74, 1304-1316.e8   DOI
29 Malbec L, Zhang T, Chen YS et al (2019) Dynamic methylome of internal mRNA N-7-methylguanosine and its regulatory role in translation. Cell Res 29, 927-941   DOI
30 Tuorto F, Liebers R, Musch T et al (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19, 900-905   DOI
31 Alexandrov A, Martzen MR and Phizicky EM (2002) Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253-1266   DOI
32 Liu Y, Zhang YS, Chi Q, Wang Z and Sun BS (2020) Methyltransferase-like 1 (METTL1) served as a tumor suppressor in colon cancer by activating 7-methyguanosine (m7G) regulated let-7e miRNA/HMGA2 axis. Life Sci 249, 117480   DOI
33 Uddin MB, Wang Z and Yang C (2020) Dysregulations of functional RNA modifications in cancer, cancer stemness and cancer therapeutics. Theranostics 10, 3164-3189   DOI
34 Niu Y, Wan A, Lin Z, Lu X and Wan G (2018) N(6)-methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharm Sin B 8, 833-843   DOI
35 Wilson C, Chen PJ, Miao Z and Liu DR (2020) Programmable m(6)A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat Biotechnol 38, 1431-1440   DOI
36 Zheng G, Dahl JA, Niu Y et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18-29   DOI
37 Ping XL, Sun BF, Wang L et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24, 177-189   DOI
38 Patil DP, Chen CK, Pickering BF et al (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369-373   DOI
39 Jia G, Fu Y, Zhao X et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885-887   DOI
40 Wei J, Liu F, Lu Z et al (2018) Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71, 973-985 e975   DOI
41 Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16, 191-198   DOI
42 Huang H, Weng H, Sun W et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20, 285-295   DOI
43 Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388-1399   DOI
44 Shi H, Wang X, Lu Z et al (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27, 315-328   DOI
45 Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560-564   DOI
46 Meyer KD, Patil DP, Zhou J et al (2015) 5' UTR m(6)A promotes cap-independent translation. Cell 163, 999-1010   DOI
47 Sun T, Wu R and Ming L (2019) The role of m6A RNA methylation in cancer. Biomed Pharmacother 112, 108613   DOI
48 Lin S, Choe J, Du P, Triboulet R and Gregory RI (2016) The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 62, 335-345   DOI
49 Han SH and Choe J (2020) Diverse molecular functions of m(6)A mRNA modification in cancer. Exp Mol Med 52, 738-749   DOI
50 Fazi F and Fatica A (2019) Interplay between N (6)-methyladenosine (m(6)A) and non-coding RNAs in cell development and cancer. Front Cell Dev Biol 7, 116   DOI
51 Chen XY, Zhang J and Zhu JS (2019) The role of m(6)A RNA methylation in human cancer. Mol Cancer 18, 103   DOI
52 Wang Q, Chen C, Ding Q et al (2020) METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 69, 1193-1205   DOI
53 Li T, Hu PS, Zuo Z et al (2019) METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 18, 112   DOI
54 Choe J, Lin S, Zhang W et al (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556-560   DOI
55 Jin H, Ying X, Que B et al (2019) N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine 47, 195-207   DOI
56 Barbieri I, Tzelepis K, Pandolfini L et al (2017) Promoterbound METTL3 maintains myeloid leukaemia by m(6)Adependent translation control. Nature 552, 126-131   DOI
57 Han J, Wang JZ, Yang X et al (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 18, 110   DOI
58 Yu K, Xiang L, Li S, Wang S, Chen C and Mu H (2019) HIF1alpha promotes prostate cancer progression by increasing ATG5 expression. Anim Cells Syst (Seoul) 23, 326-334   DOI
59 Zhou S, Treloar AE and Lupien M (2016) Emergence of the noncoding cancer genome: a target of genetic and epigenetic alterations. Cancer Discovery 6, 1215-1229   DOI
60 Chiba T, Marusawa H and Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143, 550-563   DOI
61 Heard E and Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95-109   DOI
62 Zhao Y, Zhao Q, Kaboli PJ et al (2019) m1A regulated genes modulate PI3K/AKT/mTOR and ErbB pathways in gastrointestinal cancer. Transl Oncol 12, 1323-1333   DOI
63 Tian QH, Zhang MF, Zeng JS et al (2019) METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med 97, 1535-1545   DOI
64 Yu FX, Zhao B and Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811-828   DOI
65 Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646   DOI
66 Helm M and Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18, 275-291   DOI
67 Zhao BS, Roundtree IA and He C (2018) Publisher correction: Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 19, 808
68 Fu Y, Dominissini D, Rechavi G and He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15, 293-306   DOI
69 Chen XX, Xu M, Xu XN et al (2020) METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 19, 106   DOI
70 Gu CH, Wang ZY, Zhou NC et al (2019) Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N-6-methyladenosine of Notch1. Mol Cancer 18, 168   DOI
71 Li X, Zhu P, Ma S et al (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11, 592-597   DOI
72 Yang X, Zhang S, He C et al (2020) METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer 19, 46   DOI
73 Cohn WE and Volkin E (1951) Nucleoside-5'-phosphates from ribonucleic acid. Nature 167, 483-484   DOI
74 Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148-162   DOI
75 Hoang C and Ferre-D'Amare AR (2001) Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929-939   DOI
76 De Zoysa MD and Yu YT (2017) Posttranscriptional RNA Pseudouridylation. Enzymes 41, 151-167   DOI
77 Duan J, Li L, Lu J, Wang W and Ye K (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34, 427-439   DOI
78 Rintala-Dempsey AC and Kothe U (2017) Eukaryotic standalone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 14, 1185-1196   DOI
79 Montanaro L, Brigotti M, Clohessy J et al (2006) Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J Pathol 210, 10-18   DOI
80 Boccaletto P, Machnicka MA, Purta E et al (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46, D303-D307   DOI
81 Zhang ZJ, Park E, Lin L and Xing Y (2018) A panoramic view of RNA modifications: exploring new frontiers. Genome Biol 19, 11   DOI
82 Shi H, Wei J and He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74, 640-650   DOI
83 Zuo XL, Chen ZQ, Gao W et al (2020) M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol 13, 5   DOI
84 Zheng QL, Gan HL, Yang FL et al (2020) Cytoplasmic m(1)A reader YTHDF3 inhibits trophoblast invasion by downregulation of m(1)A-methylated IGF1R. Cell Discov 6, 12   DOI
85 Nachtergaele S and He C (2018) Chemical modifications in the life of an mRNA transcript. Annu Rev Genet 52, 349-372   DOI
86 Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206   DOI
87 Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12, 767-772   DOI
88 Xiao S, Cao S, Huang Q et al (2019) The RNA N(6)-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol 21, 651-661   DOI
89 Wen J, Lv R, Ma H et al (2018) Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69, 1028-1038 e1026   DOI
90 Wang P, Doxtader KA and Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63, 306-317   DOI
91 Stockert JA, Gupta A, Herzog B, Yadav SS, Tewari AK and Yadav KK (2019) Predictive value of pseudouridine in prostate cancer. Am J Clin Exp Urol 7, 262-272
92 Sieron P, Hader C, Hatina J et al (2009) DKC1 overexpression associated with prostate cancer progression. Br J Cancer 101, 1410-1416   DOI
93 Liu B, Zhang J, Huang C and Liu H (2012) Dyskerin overexpression in human hepatocellular carcinoma is associated with advanced clinical stage and poor patient prognosis. PLoS One 7, e43147   DOI
94 Alawi F, Lin P, Ziober B and Patel R (2011) Correlation of dyskerin expression with active proliferation independent of telomerase. Head Neck 33, 1041-1051   DOI
95 Montanaro L, Calienni M, Bertoni S et al (2010) Novel dyskerin-mediated mechanism of p53 inactivation through defective mRNA translation. Cancer Res 70, 4767-4777   DOI
96 McMahon M, Contreras A, Holm M et al (2019) A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. Elife 8, e48847   DOI
97 RajBhandary UL, Stuart A, Faulkner RD, Chang SH and Khorana HG (1966) Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb Symp Quant Biol 31, 425-434   DOI
98 Li X, Xiong X, Zhang M et al (2017) Base-resolution mapping reveals distinct m(1)A methylome in nuclearand mitochondrial-encoded transcripts. Mol Cell 68, 993-1005 e1009   DOI
99 Roundtree IA, Evans ME, Pan T and He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169, 1187-1200   DOI
100 Li X, Xiong X, Wang K et al (2016) Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 12, 311-316   DOI