• Title/Summary/Keyword: Molecular control

Search Result 2,921, Processing Time 0.036 seconds

SUBMICRON TECHNOLOGY OF SINGLE LAYER PHOTO-RESIT (단층RESIST의 미세패턴형성기술)

  • Bae, Kyung-Sung;Hong, Seung-Kag
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.315-318
    • /
    • 1988
  • THE STUDY ABOUT CHARACTERISTICS OF PHOTO RESIST ITSELF (MINIMUM RESOLUTION, DEPTH OF FOCUS MARGIN AND CRITICAL DIMENSION CONTROL LATITUDE) WAS DONE AND REPORTED. THREE TYPES OF PHOTO RESISTS WERE TESTED. THE FIRST IS THE LOW MOLECULAR WEIGHT PHOTO-RESIST SHOWING THE NARROW DISTRIBUTION OF MOLECULAR WEIGHT (LOW MOLECULAR WEIGHT CONTROL TYPE), THE SECOND IS A PHOTO-RESIST CONTAINING THE INNER CONTRAST ENCHANCEMENT MATERIAL (INNER CEM TYPE) AND THE THIRD IS A NORMAL PHOTO-RESIST (HIGH MOLECULAR WEIGHT TYPE). THE INNER CEM TYPE AND THE LOW MOLECULAR WEIGHT CONTROL TYPE PHOTO-RESIST ARE MORE IMPROVED PHOTO-RESISTS. IT PROVED THAT THE MINIMUM RESOLUTION WAS IMPROVED BY 0.2 - 0.3 um, THE DEPTH OF FOCUS MARGIN WAS IMPROVED BY 0.8 - 1.2 um AND THE C.D. CONTROL LATITUIDE WAS IMPROVED.

  • PDF

The role of neuroinflammation on the pathogenesis of Parkinson's disease

  • Chung, Young-Cheul;Ko, Hyuk-Wan;Bok, Eu-Gene;Park, Eun-Soo;Huh, Sue-Hee;Nam, Jin-Han;Jin, Byung-Kwan
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.225-232
    • /
    • 2010
  • Parkinson's Disease (PD) is a common neurodegenerative disease characterized by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. Although the causative factors of PD remain elusive, many studies on PD animal models or humans suggest that glial activation along with neuroinflammatory processes contribute to the initiation or progression of PD. Additionally, several groups have proposed that dysfunction of the blood-brain barrier (BBB) combined with infiltration of peripheral immune cells play important roles in the degeneration of DA neurons. However, these neuroinflammatory events have only been investigated separately, and the issue of whether these phenomena are neuroprotective or neurotoxic remains controversial. We here review the current knowledge regarding the functions of these neuroinflammatory processes in the brain. Finally, we describe therapeutic strategies for the regulation of neuroinflammation with the goal of improving the symptoms of PD.

MicroRNAs: Biogenesis, Roles for Carcinogenesis and as Potential Biomarkers for Cancer Diagnosis and Prognosis

  • Kavitha, Nowroji;Vijayarathna, Soundararajan;Jothy, Subramanion Lachumy;Oon, Chern Ein;Chen, Yeng;Kanwar, Jagat Rakesh;Sasidharan, Sreenivasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7489-7497
    • /
    • 2014
  • MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.

Molecular Chaperones in Protein Quality Control

  • Lee, Suk-Yeong;Tsai, Francis T.F.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones re a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more 'conventional' chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.

Metabolic changes during adaptation to saline condition and stress memory of Arabidopsis cells

  • Chun, Hyun Jin;Park, Mi Suk;Lee, Su Hyeon;Jin, Byung-Jun;Cho, Hyun Min;Hong, Young-Shick;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.175-175
    • /
    • 2017
  • To understand molecular mechanisms underlying adaptation of plant cells to saline stress and stress memory, we developed Arabidopsis callus suspension-cultured cells adapted to high salt. Adapted cells to high salt exhibited enhanced tolerance compared to control cells. Moreover, the salt tolerance of adapted cells was stably maintained even after the stress is relieved, indicating that the acquired salt tolerance of adapted cells was memorized. In order to characterize metabolic responses of plant cells during adaptation to high salt stress as well as stress memory, we compared metabolic profiles of salt-adapted and stress-memorized cells with control cells by using NMR spectroscopy. A principle component analysis showed clear metabolic discrimination among control, salt-adapted and stress-memorized cells. Compared with control cells, metabolites related to shikimate metabolism such as tyrosine, and flavonol glycosides, which are related to protective mechanism of plant against stresses were largely up-regulated in adapted cell lines. Moreover, coniferin, a precursor of lignin, was more abundant in salt-adapted cells than control cells. Cell morphology analysis using transmission electron microscopy indicated that cell wall thickness of salt-adapted cells was significantly induced compared to control cells. Consistently, salt adapted cells contained more lignin in their cell walls compared to control cells. The results provide new insight into mechanisms of plant adaptation to saline stress as well as stress memory in metabolic level.

  • PDF

Burnout and Workload Among Health Care Workers: The Moderating Role of Job Control

  • Portoghese, Igor;Galletta, Maura;Coppola, Rosa Cristina;Finco, Gabriele;Campagna, Marcello
    • Safety and Health at Work
    • /
    • v.5 no.3
    • /
    • pp.152-157
    • /
    • 2014
  • Background: As health care workers face a wide range of psychosocial stressors, they are at a high risk of developing burnout syndrome, which in turn may affect hospital outcomes such as the quality and safety of provided care. The purpose of the present study was to investigate the moderating effect of job control on the relationship between workload and burnout. Methods: A total of 352 hospital workers from five Italian public hospitals completed a self-administered questionnaire that was used to measure exhaustion, cynicism, job control, and workload. Data were collected in 2013. Results: In contrast to previous studies, the results of this study supported the moderation effect of job control on the relationship between workload and exhaustion. Furthermore, the results found support for the sequential link from exhaustion to cynicism. Conclusion: This study showed the importance for hospital managers to carry out management practices that promote job control and provide employees with job resources, in order to reduce the burnout risk.

Structure and Function of HtrA Family Proteins, the Key Players in Protein Quality Control

  • Kim, Dong-Young;Kim, Kyeong-Kyu
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • High temperature requirement A (HtrA) and its homologues constitute the HtrA familiy proteins, a group of heat shock-induced serine proteases. Bacterial HtrA proteins perform crucial functions with regard to protein quality control in the periplasmic space, functioning as both molecular chaperones and proteases. In contrast to other bacterial quality control proteins, including ClpXP, ClpAP, and HslUV, HtrA proteins contain no regulatory components or ATP binding domains. Thus, they are commonly referred to as ATP-independent chaperone proteases. Whereas the function of ATP-dependent chaperone-proteases is regulated by ATP hydrolysis, HtrA exhibits a PDZ domain and a temperature-dependent switch mechanism, which effects the change in its function from molecular chaperone to protease. This mechanism is also related to substrate recognition and the fine control of its function. Structural and biochemical analyses of the three HtrA proteins, DegP, DegQ, and DegS, have provided us with clues as to the functional regulation of HtrA proteins, as well as their roles in protein quality control at atomic scales. The objective of this brief review is to discuss some of the recent studies which have been conducted regarding the structure and function of these HtrA proteins, and to compare their roles in the context of protein quality control.

Validation of Synovial Fluid Clinical Samples for Molecular Detection of Pathogens Causing Prosthetic Joint Infection Using GAPDH Housekeeping Gene as Internal Control

  • Jiyoung Lee;Eunyoung Baek;Hyesun Ahn;Youngnam Park;Geehyuk Kim;Sua Lim;Suchan Lee;Sunghyun Kim
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.220-230
    • /
    • 2023
  • Identification of the pathogens causing infection is important in terms of patient's health management and infection control. Synovial fluids could be used as clinical samples to detect causative pathogens of prosthetic joint infections (PJIs) using molecular diagnostic assays, therefore, normalization and validation of clinical samples are necessary. Microbial culture is considered the gold standard for all infections, including PJIs. Recently, molecular diagnostic methods have been developed to overcome the limitation of microbial culture. Therefore, guideline for validating clinical samples to provide reliable results of molecular diagnostic assays for infectious diseases is required in clinical field. The present study aimed to develop an accurate validating method of synovial fluid clinical samples using GAPDH gene as an internal control to perform the quantitative PCR TaqMan probe assay to detect pathogens causing PJIs.

Molecular Weight Distribution of Pullulan and Degrading Enzyme Activity of Aureobasidium pullulans

  • Lee, Ji-Hyeon;Kim, Mi-Ryeong;Kim, Jeong-Hwa;Lee, Jin-U;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.325-328
    • /
    • 2000
  • The effects of DO and pH on the mass production of pullulan with high-molecular weight from A. pullulans ATCC 42023 were evaluated. The maximum pullulan production yield (51%) was obtained at pH non control (initial pH 6.5) and DO control (above 50%) condition. The pullulan degrading enzyme was activated when the pH of broth reached lower than 5.0 and portion of low molecular weight pullulan was increased. The formation of a black pigment was observed at the initial stationary phase, 40hr of fermentation. Therefore, the fermentation should be carried out in pH non control and DO control condition and harvested before reaching stationary phase around 40h for the production of high molecular weight pullulan.

  • PDF