DOI QR코드

DOI QR Code

Validation of Synovial Fluid Clinical Samples for Molecular Detection of Pathogens Causing Prosthetic Joint Infection Using GAPDH Housekeeping Gene as Internal Control

  • Jiyoung Lee (Department of Research & Development, DreamDX) ;
  • Eunyoung Baek (Department of Research & Development, DreamDX) ;
  • Hyesun Ahn (Joint & Arthritis Research, Himchan Hospital) ;
  • Youngnam Park (Department of Dental Hygiene, Gimcheon University) ;
  • Geehyuk Kim (Division of Risk Assessment, Bureau of Public Health Emergency Preparedness, Korea Disease Control and Prevention Agency) ;
  • Sua Lim (Department of Research & Development, DreamDX) ;
  • Suchan Lee (Joint & Arthritis Research, Himchan Hospital) ;
  • Sunghyun Kim (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • Received : 2023.10.25
  • Accepted : 2023.11.15
  • Published : 2023.12.31

Abstract

Identification of the pathogens causing infection is important in terms of patient's health management and infection control. Synovial fluids could be used as clinical samples to detect causative pathogens of prosthetic joint infections (PJIs) using molecular diagnostic assays, therefore, normalization and validation of clinical samples are necessary. Microbial culture is considered the gold standard for all infections, including PJIs. Recently, molecular diagnostic methods have been developed to overcome the limitation of microbial culture. Therefore, guideline for validating clinical samples to provide reliable results of molecular diagnostic assays for infectious diseases is required in clinical field. The present study aimed to develop an accurate validating method of synovial fluid clinical samples using GAPDH gene as an internal control to perform the quantitative PCR TaqMan probe assay to detect pathogens causing PJIs.

Keywords

Acknowledgement

This work was supported by Busan Techno Park by the Korea government (Busan).

References

  1. Blaschke V, Reich K, Blaschke S, et al. Rapid quantitation of proinflammatory and chemoattractant cytokine expression in small tissue samples and monocyte-derived dendritic cells: validation of a new real-time RT-PCR technology. J Immunol Methods. 2000. 246: 79-90.  https://doi.org/10.1016/S0022-1759(00)00304-5
  2. Cheon YP. Expression of doc-1 in pregnant uterus of the mouse. Kor J Fertil Steril. 2002. 29: 295-302. 
  3. Fang XY, Li WB, Zhang CF, et al. Detecting the presence of bacterial DNA and RNA by polymerase chain reaction to diagnose suspected periprosthetic joint infection after antibiotic therapy. Orthop Surg. 2018. 10: 40-46.  https://doi.org/10.1111/os.12359
  4. Fu D, Li G, Chen K, et al. Comparison of high tibial osteotomy and unicompartmental knee arthroplasty in the treatment of unicompartmental osteoarthritis a meta-analysis. J Arthroplasty. 2013. 28: 759-765.  https://doi.org/10.1016/j.arth.2013.02.010
  5. Gatti G, Taddei F, Brandolini M, et al. Molecular approach for the laboratory diagnosis of periprosthetic joint infections. Microorganisms. 2022. 10: 1573. 
  6. Ghasemi S, Mirshokraei P, Hassanpour H, et al. Identification of reliable reference genes for quantitative real-time PCR in equine fibroblast-like synoviocytes treated by doxycycline. J Equine Vet Sci. 2017. 50: 44-51.  https://doi.org/10.1016/j.jevs.2016.11.008
  7. Kanbe K, Takagishi K, Chen Q. Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum. 2002. 46: 130-137.  https://doi.org/10.1002/1529-0131(200201)46:1<130::AID-ART10020>3.0.CO;2-D
  8. Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection. Lancet. 2016. 387: 386-394.  https://doi.org/10.1016/S0140-6736(14)61798-0
  9. Karczewski D, Winkler T, Renz N, et al. A standardized interdisciplinary algorithm for the treatment of prosthetic joint infections. Bone Joint J. 2019. 101-B: 132-139.  https://doi.org/10.1302/0301-620X.101B2.BJJ-2018-1056.R1
  10. Kasama T, Kobayashi K, Yajima N, et al. Expression of vascular endothelial growth factor by synovial fluid neutrophils in rheumatoid arthritis (RA). Clin Exp Immunol. 2000. 121: 533-538.  https://doi.org/10.1046/j.1365-2249.2000.01272.x
  11. Kim KW, Kim HR, Park JY, et al. Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 2012. 64: 1015-1023.  https://doi.org/10.1002/art.33446
  12. Kuiper JW, Verberne SJ, van Egmond PW, et al. Are accuracy studies for periprosthetic joint infection diagnosis inherently flawed? And what to do with schrodinger's hips? A prospective analysis of the alpha defensin lateral-flow test in chronic painful hip arthroplasties. Hip Pelvis. 2022. 34: 236-244.  https://doi.org/10.5371/hp.2022.34.4.236
  13. Lamagni T. Epidemiology and burden of prosthetic joint infections. J Antimicrob Chemother. 2014. 69: i5-i10.  https://doi.org/10.1093/jac/dku247
  14. Lee JY, Park HC, Bae JY, et al. Current diagnostic methods for periprosthetic joint infection. Biomed Sci Letters. 2022. 28: 1-8.  https://doi.org/10.15616/BSL.2022.28.1.1
  15. Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008. 58: 1284-1292.  https://doi.org/10.1002/art.23429
  16. Nazet U, Schroder A, Grassel S, et al. Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading. PLos One. 2019. 14: e0225790. 
  17. Parvizi J, Tan TL, Goswami K, et al. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J Arthroplasty. 2018. 33: 1309-1314.  https://doi.org/10.1016/j.arth.2018.02.078
  18. Patel M, Gazendam A, Wood TJ, et al. The quality of diagnostic studies used for the diagnostic criteria of periprosthetic joint infections. Eur J Orthop Surg Traumatol. 2023. 33: 2035-2048.  https://doi.org/10.1007/s00590-022-03386-w
  19. Rho KH, Jeong HR, Kim SH, et al. The Korean surgical site infection surveillance system report, 2018. Korean J Healthc Assoc Infect Control Prev. 2020. 25: 128-136.  https://doi.org/10.14192/kjicp.2020.25.2.128
  20. Takeuchi R, Umemoto Y, Aratake M, et al. A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee. J Orthop Surg Res. 2010. 5: 65. 
  21. Tarabichi S, Goh GS, Zanna L, et al. Time to positivity of cultures obtained for periprosthetic joint infection. J Bone Joint Surg Am. 2023. 1105: 107-112. 
  22. Vale JS, Castelo FS, Barros BS, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection-a systematic review and meta-analysis of their diagnostic accuracy according to different definitions. J Arthroplasty. 2023. 14: S0883-540300650-2. 
  23. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002. 3: research0034. 
  24. Wouthuyzen-Bakker M. Cultures in periprosthetic joint infections, the imperfect gold standard? EFFORT Open Rev. 2023. 8: 175-179. 
  25. Xiong H, Li W, Li J, et al. Elevated leptin levels in temporomandibular joint osteoarthritis promote proinflammatory cytokine IL-6 expression in synovial fibroblasts. J Oral Pathol Med. 2018. 48: 251-259.  https://doi.org/10.1111/jop.12819
  26. Zhang H, Liew CC, Marshall KW. Microarray analysis reveals the involvement of beta-2 microglobulin (B2M) in human osteoarthritis. Osteoarthritis Cartilage. 2002. 10: 950-960.  https://doi.org/10.1053/joca.2002.0850
  27. Zhang X, Ding L, Sandford AJ. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol Biol. 2005. 6: 4. 
  28. Zmistowski B, Della Valle C, Bauer TW, et al. Diagnosis of periprosthetic joint infection. J Orthop Res. 2014. 32: S98-S107. 
  29. Zainuddin A, Chua KH, Abdul Rahim N, et al. Effect of experimental treatment on GAPDH mRNA expression as a housekeeping gene in human diploid fibroblasts. BMC Mol Biol. 2010. 11: 59.